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1 Introduction
A spectral method is a general approach to numerically solving a differential equation by assuming that a
good approximate solution can be constructed as the sum of a finite set of basis functions. Knowing how
to differentiate the basis elements allows one to determine the combination of basis functions that best
satisfies the differential equation, a process which becomes exponentially more accurate as additional
terms are added. While there are many useful sets of basis functions, we will focus on Chebyshev
polynomials. These orthogonal polynomials are related to the Fourier series via a simple change of
variables, a fact which allows much of the theory and many of the computational tools developed for
Fourier series to be applied to finite domains through the Chebyshev polynomials.

Section 2 develops the convergence properties of Fourier and Chebyshev series, allowing us to estimate
the error in approximating a given function by a finite number of sinusoids or Chebyshev polynomials.
We then discuss the two main types of spectral methods: the integration and interpolation approaches.
The Galerkin formulation determines the spectral coefficients of the solution by projecting terms in the
differential equation against individual basis functions. An approximately equivalent formulation is the
pseudospectral method, which instead enforces the differential equation over a set of interpolation points.

Section 3 explicitly outlines the machinery needed to numerically implement Chebyshev spectral
algorithms and solve linear ordinary differential equations. Section 4 uses our open-source Python
implementation of these tools to solve three eigenvalue problems: determining the eigenfrequencies of a
plucked string, the normal modes of the magnetorotational instability in a stratified disc, and the normal
modes of the heat-flux buoyancy instability in cool galaxy cluster cores.

Section 5 extends our framework to cover general partial differential equations with one spatial and
one temporal dimension. This involves a brief discussion of explicit time-marching methods and different
approaches to implementing boundary conditions. Finally, these tools are used in Section 6 to examine
the wave equation with various boundary conditions, the 4-th order Kuramoto-Sivashinsky equation,
and the complex Ginzburg-Landau equation.

2 Theory of spectral methods
We begin our analysis of Chebyshev spectral methods by defining the orders of convergence for a general
spectral series. We then state several theorems on the converge of Fourier series which underpin the proofs
of Chebyshev convergence. Finally, the formulations and accuracies of the Galerkin and pseudospectral
methods are discussed.

This section follows the presentation offered in chapters 2-4 of Boyd (2000), but the definitions and
theorems are common throughout the literature on spectral methods.

2.1 Series convergence

Consider a general series expansion of a function 𝑓(𝑥) over a set of normalized basis functions {𝜙Վ}:

𝑓(𝑥) =
�

Փ=ɱ

𝛼Փ𝜙Փ(𝑥) (1)

The asymptotic order of convergence of such a series tells us how the coefficients 𝛼Փ scale for large 𝑛.
For simplicity, the following definitions ignore subdominant terms that may appear in the scalings, such
as logarithms when multiplied by algebraic terms, or algebraic terms when multiplied by exponentials.
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Definition: If the coefficients of a series behave like

𝛼Փ ∼ 𝒪 ऺ𝑛−Րऻ (2)

for large 𝑛, then 𝑘 is the algebraic index of convergence of the series.

Definition: If the coefficients of a series behave like

𝛼Փ ∼ 𝒪 (exp(−𝑐𝑛)) (3)

for large 𝑛 and some constant 𝑐, then the series exhibits exponential convergence, and 𝑟 is
the exponential index of convergence.

Definition: Let

𝜇 = lim sup
Փ→�

log(|𝛼Փ|)/𝑛 (4)

If 𝜇 = 0, then the series exhibits subgeometric convergence. If 𝜇 = ∞, then the series exhibits
supergeometric convergence. If 𝜇 is a constant, then the series exhibits geometric convergence
and 𝜇 is the asymptotic rate of geometric convergence of the series.

Knowing the order of convergence of a series provides insight into the errors made by spectral methods,
which in general aim to determine the first 𝑁 + 1 coefficients in the series expansion of the solution of a
differential equation. The true solution can be expanded as

𝑢(𝑥) =
�

Փ=ɱ

𝐴Փ𝜙Փ(𝑥) (5)

and the approximate solution, as provided by the spectral method, as

𝑢Թ(𝑥) =
Թ


Փ=ɱ

𝛼Փ𝜙Փ(𝑥) (6)

The truncation error of this approximation is the error associated with neglecting terms with 𝑛 > 𝑁 , and,
as we will see, can be estimated using the convergence properties of Fourier and Chebyshev series. The
discretization error is the difference between the approximated coefficients 𝛼Փ and the true coefficients
𝐴Փ for 𝑛 = 0, …, 𝑁 . Although it cannot be proven when the true solution is unknown, it is commonly
assumed that the discretization error is of the same order as the truncation error, allowing the use of the
latter for estimating the total error in the approximate solution.

2.2 Fourier series

The Fourier series of a function 𝑓(𝑥), written in complex form, is

𝑓(𝑥) =
�


Փ=−�
𝑐Փ exp(i𝑛𝑥) (7)

𝑐Փ = 1
2π ௲

ၻ

−ၻ
𝑓(𝑥) exp(−i𝑛𝑥) d𝑥 (8)
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Integrating Equation (8) by parts 𝐽 + 1 times yields

𝑐Փ = 1
2π

Ե

Տ=ɱ

(−1)Փ+ȯ  1
i𝑛ও

Տ+ȯ
ॖ𝑓 (Տ)(π) − 𝑓 (Տ)(−π)ॗ + 1

2π  1
i𝑛ও

Ե+ȯ
௲

ၻ

−ၻ
𝑓 (Ե+ȯ)(𝑥) exp(−i𝑛𝑥) d𝑥 (9)

where superscripts in parentheses indicate derivatives. The integral has an upper bound of

2π max
՝

|𝑓 (Ե+ȯ)(𝑥)| (10)

so as 𝑛 → ∞ for fixed 𝐽 , the second term behaves like 𝒪 ॐ𝑛−(Ե+ȯ)॑, yielding the Fourier asymptotic
coefficient expansion:

𝑐Փ ∼ 1
2π

Ե

Տ=ɱ

(−1)Փ+ȯ  1
i𝑛ও

Տ+ȯ
ॖ𝑓 (Տ)(π) − 𝑓 (Տ)(−π)ॗ + 𝒪 ॐ𝑛−(Ե+ȯ)॑ (11)

Theorem: If 𝑓 (Վ)(π) = 𝑓 (Վ)(−π) and 𝑓 (Վ)(𝑥) is continuous for 𝑖 = 0, …, 𝑘 − 2, and 𝑓 (Ր) is
integrable, then the coefficients of the Fourier series of 𝑓(𝑥) are bounded from above like

|𝑐Փ| ≤ 𝐶|𝑛|−Ր (12)

for some constant 𝐶.

The proof of the theorem follows from the coefficient expansion above with 𝐽 = 𝑘 − 1. This is a very
useful result: the number of continuous, periodic derivatives of a function provides a lower bound on the
algebraic index of convergence of that function’s Fourier series. In particular, if a function is periodic
and smooth (infinitely differentiable), then the series converges faster than any power of 𝑛, i.e. the series
exhibits exponential convergence.

The domain and rate of convergence of the Fourier series of a function 𝑓(𝑧) depends on the location
of the singularities of 𝑓 in the complex plane.

Theorem: Let {𝑧Տ = 𝑥Տ + i𝑦Տ} denote the set of singularities of a function 𝑓(𝑧). If 𝜌 is the
magnitude of the imaginary part of the singularity that lies closest to the real axis,

𝜌 = min
Տ

|𝑦Տ| (13)

then the domain of convergence of the Fourier series of 𝑓(𝑧) is the strip centered around the
real axis with width 2𝜌:

{𝑧 = 𝑥 + i𝑦 ∶ |𝑦| < 𝜌} (14)

and the asymptotic rate of convergence for real 𝑧 is 𝜇 = 𝜌. Series with a finite algebraic
index of convergence have 𝜌 = 0 and only converge on the real line. Periodic and entire
functions (i.e. with no singularities except possibly at ∞) usually have 𝜌 = ∞ and converge
supergeometrically.

We provide the same heuristic proof as Boyd. It is clear from the form of the complex Fourier series
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𝑓(𝑧) =
�


Փ=−�
𝑐Փ exp(i𝑛𝑧) =

�


Փ=−�
𝑐Փ exp(i𝑛𝑥) exp(−𝑛𝑦) (15)

that terms with negative 𝑛 grow exponentially in the upper half-plane while terms with positive 𝑛 grow
exponentially in the lower half-plane. Therefore, the coefficients |𝑐Փ| must decay at least as fast as
exp(−|𝑛|𝜌) for the series to converge at |𝑦| = 𝜌. However, since the series must converge to higher and
higher values as 𝑧 approaches the singularity, the coefficients cannot decay faster than, and therefore
must decay like, exp(−|𝑛|𝜌).

Knowledge of the convergence of a Fourier series allows us to estimate the error in truncated the series
after 𝑁 terms. Since the Fourier basis functions are unit-normalized, the truncation error is bounded
from above by the sum of the magnitudes of the neglected coefficients:

𝑓Թ(𝑥) =
Թ


Փ=−Թ

𝑐Փ exp(i𝑛𝑧) (16)

⟹ 𝐸Կ (𝑁) = |𝑓(𝑥) − 𝑓Թ(𝑥)| ≤ 
|Փ|>Թ

|𝑐Փ| (17)

For geometrically converging series, which have coefficients like 𝑐Փ ∼ 𝒪 (exp(−𝜇𝑛)), this sum yields

𝐸Կ (𝑁) ∼ 𝒪 (exp(−𝜇𝑁)) ∼ 𝒪 (|𝑐Թ|) (18)

while for algebraically converging series, which have coefficients like 𝑐Փ ∼ 𝒪 ऺ𝑛−Րऻ, it yields

𝐸Կ (𝑁) ∼ 𝒪 ऺ1/𝑁Ր+ȯऻ ∼ 𝒪 (𝑁|𝑐Թ|) (19)

In both cases, we see that the truncation error is related to the last coefficient retained in the truncated
series, providing a quick way to check whether more terms are needed to attain a given accuracy.

2.3 Chebyshev series

The Chebyshev polynomials of the first kind are defined by

𝑇Փ(𝑥) = cos(𝑛𝜃) (20)

where 𝜃 = arccos(𝑥). This mapping has a simple geometric interpretation: the 𝑛-th Chebyshev polyno-
mial is the projection onto a plane of the function 𝑦 = cos(𝑛𝜃) drawn on a cylinder, as demonstrated in
Figure 1.

By inspection, we see that the first two Chebyshev polynomials are

𝑇ɱ(𝑥) = cos(0) = 1 (21)

𝑇ȯ(𝑥) = cos(arccos(𝑥)) = 𝑥 (22)

Using basic trigonometric identities, we see

𝑇Փ+ȯ(𝑥) = cos(𝑛𝜃) cos(𝜃) − sin(𝑛𝜃) sin(𝜃) (23)

𝑇Փ−ȯ(𝑥) = cos(𝑛𝜃) cos(𝜃) + sin(𝑛𝜃) sin(𝜃) (24)
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Figure 1: Chebyshev polynomials viewed as projections of cosines for 𝑛 = 1, 2, 3.

⟹ 𝑇Փ+ȯ(𝑥) + 𝑇Փ−ȯ(𝑥) = 2 cos(𝑛𝜃) cos(𝜃) (25)

⟹ 𝑇Փ+ȯ(𝑥) = 2𝑥𝑇Փ(𝑥) − 𝑇Փ−ȯ(𝑥) (26)

This recurrence relation, in conjunction with our expressions for 𝑇ɱ(𝑥) and 𝑇ȯ(𝑥), verifies that 𝑇Փ(𝑥) is
a polynomial of degree 𝑛.

The trigonometric definition of the Chebyshev polynomials provides a way of mapping a function 𝑓(𝑥)
defined on the interval [−1, 1] to a function defined over 𝜃 ∈ ℝȯ, allowing us to derive the convergence
properties of Chebyshev series from those of Fourier series.

Theorem: Chebyshev series converge exponentially for functions without singularities in
[−1, 1], whether or not the function is periodic or has singularities elsewhere on the real line.

Any Chebyshev series

𝑓(𝑥) =
�

Փ=ɱ

𝑎Փ𝑇Փ(𝑥) (27)

can be written as

𝑓(cos(𝜃)) =
�

Փ=ɱ

𝑎Փ cos(𝑛𝜃) (28)

which is a Fourier cosine series in 𝜃 (i.e. a Fourier series with real coefficients and 𝑐Փ = 𝑐−Փ). The
mapped function 𝑓(cos(𝜃)) is 2π-periodic in 𝜃 and oscillates through the values of 𝑓(𝑥) on the interval
[−1, 1], so its Fourier series converges exponentially as long as 𝑓(𝑥) has no singularities in this interval.
The same convergence follows for the Chebyshev series by the equality of the series coefficients.

Theorem: Let {𝑧Տ = 𝑥Տ + i𝑦Տ} denote the set of the singularities of a function 𝑓(𝑧). Let
𝜇Տ denote the quasi-radius of the 𝑗-th singularity in elliptical coordinates, i.e. the unique
ellipse with foci at 𝑧 = ±1 passing through 𝑧Տ has a semi-major axis 𝑎 = cosh(𝜇Տ). If 𝜌 is the
smallest such quasi-radius,

𝜌 = min
Տ

𝜇Տ (29)

then the domain of convergence of the Chebyshev series of 𝑓(𝑧) is the ellipse with quasi-radius
𝜌 and the asymptotic rate of convergence is 𝜇 = 𝜌. Series with a finite algebraic index of
convergence have 𝜌 = 0 and only converge on the real interval [−1, 1].
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The mapping of points 𝜃 = 𝜂 + i𝜇 in the complex 𝜃 plane to the complex 𝑧 plane is given by

𝑧 = cos(𝜃) = cosh 𝜇 cos(𝜂) − i sinh(𝜇) sin(𝜂) (30)

We see that (𝜇, 𝜂) form elliptical coordinates in the complex 𝑧 plane: surfaces of constant 𝜇 are ellipses
with quasi-radius 𝜇 and foci at 𝑧 = ±1, as plotted in Figure 2. Since the quasi-radius of a singularity
in the complex 𝑧 plane is equal to the distance of the singularity from the real line in the complex 𝜃
plane, the smallest such distance, 𝜌, determines the asymptotic rate of convergence of the Fourier series
of 𝑓(cos(𝜃)) and therefore of the Chebyshev series of 𝑓(𝑧). Additionally, the Fourier series converges on
the strip |𝜇| < 𝜌, which maps to the interior of the ellipse with quasi-radius 𝜌 in the complex 𝑧 plane.

Figure 2: Surfaces of constant 𝜇 (ellipses) and 𝜂 (hyperbolas) in the complex 𝑧 plane, under the transform
𝑧 = cos(𝜃), where 𝑧 = 𝑥 + i𝑦 and 𝜃 = 𝜂 + i𝜇. The Chebyshev series of a function 𝑓(𝑧) converges inside
the smallest ellipse passing through a singularity of 𝑓(𝑧).

The estimates of the truncation error of a Chebyshev series using the last retained coefficient follow
directly from those for Fourier series.

2.4 Galerkin method

Consider an ordinary differential equation

𝐻𝑢 = 𝑓 (31)

for some linear differential operator 𝐻 and a known function 𝑓 . The general goal of a spectral method
is to approximate the true solution 𝑢(𝑥) by a truncated series

𝑢Թ =
Թ


Փ=ɱ

𝛼Փ𝜙Փ(𝑥) (32)

and to find the coefficients {𝛼Փ} that minimize the residual function
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𝑅(𝑥) = 𝐻𝑢Թ − 𝑓 (33)

Definition: The Galerkin approach to minimizing the residual function is to require that
the first 𝑁 + 1 terms of its series expansion are zero.

The series expansion of the residual function is given by

𝑅 =
�


Ւ=ɱ
𝑟Փ𝜙Փ(𝑥) (34)

The residual coefficients can be computed via the inner product

𝑟Տ = (𝑅, 𝜙Տ)/(𝜙Տ, 𝜙Տ) (35)

where

(𝑓, 𝑔) = ௲
Շ

Ն
𝜔(𝑥)𝑓(𝑥)𝑔(𝑥) d𝑥 (36)

is the inner product weighted by 𝜔(𝑥) on the interval [𝑎, 𝑏] under which the basis functions are orthogonal.
Requiring 𝑟Վ = 0 for 𝑖 = 0, ..., 𝑁 yields 𝑁 + 1 coupled equations for 𝛼ɱ, ..., 𝛼Թ:

Թ

Տ=ɱ

𝛼Տ(𝜙Վ, 𝐻𝜙Տ) = (𝜙Վ, 𝑓), 𝑖 = 0, ..., 𝑁 (37)

These equations can be written in matrix form as

𝐻 ⋅ 𝛼 = 𝑓 (38)

where

𝐻ՎՏ = (𝜙Վ, 𝐻𝜙Տ) (39)

𝑓Վ = (𝜙Վ, 𝑓) (40)

The unknown coefficients 𝛼 can be determined using a matrix solve, and the error of the approximation
will be on the order of |𝑟Թ+ȯ|, i.e. 𝒪 (−𝜇(𝑁 + 1)) in the geometric case.

2.5 Pseudospectral method

While the Galerkin method is a very powerful tool, the integrals required to construct the matrix elements
for Equation (39) can become prohibitively complex. If {𝜙Վ} is a polynomial basis, then the inner
products required by the Galerkin method can be accurately approximated by Gaussian quadrature.

Theorem: Consider the set {𝜙Վ} of orthogonal polynomials on the interval [𝑎, 𝑏] with respect
to the weight 𝜔(𝑥). Then, if the set of points {𝑥Վ} are the 𝑀 + 1 zeros of 𝜙Ը+ȯ(𝑥), known
as the 𝑀 + 1 abscissas of Gaussian quadrature, then

௲
Շ

Ն
𝜔(𝑥)𝑃(𝑥) d𝑥 =

Ը

Վ=ɱ

𝑤Վ𝑃(𝑥Վ) = (𝑃)Բ (41)
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for all polynomials 𝑃(𝑥) of degree less than or equal to 2𝑀+1. The quadrature weights {𝑤Վ}
are the integrals of the cardinal functions {𝐶Վ} on the grid:

𝑤Վ = ௲
Շ

Ն
𝐶Վ(𝑥) d𝑥 (42)

𝐶Վ(𝑥) =
Ը


Տ=ɱӱՏ≠Վ

𝑥 − 𝑥Տ
𝑥Վ − 𝑥Տ

(43)

The cardinal functions {𝐶Վ} on a set of 𝑀 + 1 collocation points {𝑥Վ} are the unique 𝑀 -th degree
polynomials that satisfy 𝐶Վ(𝑥Տ) = 𝛿ՎՏ. Thus, any polynomial 𝑃(𝑥) of degree less than or equal to 𝑀 can
be exactly expanded in cardinal functions as

𝑃(𝑥) =
Ը

Վ=ɱ

𝑃(𝑥Վ)𝐶Վ(𝑥) (44)

and can be exactly integrated as

௲
Շ

Ն
𝑃(𝑥) d𝑥 =

Ը

Վ=ɱ

𝑃(𝑥Վ) ௲
Շ

Ն
𝐶Վ(𝑥) d𝑥 =

Ը

Վ=ɱ

𝑤Վ𝑃(𝑥Վ) (45)

Gauss’s insight was that the positions of the collocation points {𝑥Վ} provide an additional 𝑀 + 1 free
parameters which can be adjusted to make the quadrature exact for polynomials of degree less than
2𝑀 + 1.

This quadrature motivates a method based on evaluating the basis functions at the collocation points.

Definition: The pseudospectral approach to minimizing the residual function is to require
that it be equal to zero on the 𝑁 + 1 abscissas of Gaussian quadrature of the given basis set.

Requiring 𝑅(𝑥Վ) = 0 on the 𝑁 + 1 abscissas {𝑥Վ} yields 𝑁 + 1 coupled equations for 𝛼ɱ, ...𝛼Թ:

Թ

Տ=ɱ

𝛼Տ𝐻𝜙Տ(𝑥Վ) = 𝑓(𝑥Վ), 𝑖 = 0, ..., 𝑁 (46)

or, in matrix form,

𝐻 ⋅ 𝛼 = 𝑓 (47)

where

𝐻ՎՏ = 𝐻𝜙Տ(𝑥Վ) (48)

𝑓Վ = 𝑓(𝑥Վ) (49)

Multiplying each row by 𝑤Վ𝜙Փ(𝑥Վ) and summing over 𝑖 for 𝑛 = 0, ...𝑁 yields

Թ

Տ=ɱ

Թ

Վ=ɱ

𝛼Տ𝑤Վ𝜙Փ(𝑥Վ)𝐻𝜙Տ(𝑥Վ) =
Թ


Վ=ɱ

𝑤Վ𝜙Փ(𝑥Վ)𝑓(𝑥Վ), 𝑛 = 0, ..., 𝑁 (50)

Թ

Տ=ɱ

𝛼Տ(𝜙Փ𝐻𝜙Տ)Բ = (𝜙Փ𝑓)Բ, 𝑛 = 0, ..., 𝑁 (51)
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and we see that the pseudospectral method is equivalent to the Galerkin method with the inner products
evaluated via Gaussian quadrature.

Since 𝐻 is a linear differential operator, 𝜙Փ𝐻𝜙Տ is a polynomial of degree less than or equal to 2𝑁 ,
meaning it is integrated exactly by Gaussian quadrature:

(𝜙Փ𝐻𝜙Տ)Բ = (𝜙Փ, 𝐻𝜙Տ) (52)

Expanding 𝑓(𝑥) in the basis as

𝑓(𝑥) =
Թ


Վ=ɱ

𝑏Վ𝜙Վ(𝑥) + 𝐸Կ (𝑁) (53)

we see that

(𝜙Փ𝑓)Բ = (𝜙Փ, 𝑓) + (𝜙Փ𝐸Կ (𝑁))Բ (54)

since Gaussian quadrature honors the orthogonality and normalizations of the basis functions.
The pseudospectral method is therefore equivalent to the Galerkin method plus terms on the order of

the truncation error of 𝑓(𝑥), which can be estimated by the last retained coefficient, i.e. 𝒪 (exp(−𝜇𝑁))
in the geometric case. The pseudospectral method with 𝑁 + 1 points is therefore roughly as accurate
as the Galerkin method with 𝑁 terms. Since this difference is unimportant for large 𝑁 , we will use the
pseudospectral method as it only requires evaluations of the basis functions and their derivatives rather
than integrals as required by the Galerkin method.

3 Solving linear ordinary differential equations
In this section we explicitly outline the standard procedure for formulating boundary value and eigenvalue
problems using the pseudospectral method with Chebyshev polynomials. These algorithms have been
implemented in an open-source, object-oriented Python package and used to solve the example problems1

in § 4.

3.1 Selecting a grid

To quickly summarize the results of the last section: we wish to solve an ordinary differential equation
of the form

𝐻𝑢 = 𝑓 (55)

where 𝐻 is a linear differential operator and 𝑓 is a known function. The pseudospectral method using
the set of orthogonal polynomials {𝜙Վ} produces an approximate solution

𝑢Թ =
Թ


Փ=ɱ

𝛼Փ𝜙Փ(𝑥) (56)

by requiring that it satisfies the differential equation at the abscissas of Gaussian quadrature for the
basis set.

1The source code for the solvers and test problems is available at https://bitbucket.org/kburns/difftools
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Due to their convergence properties on finite intervals, we wish to use Chebyshev polynomials as our
basis functions. They are orthogonal on the interval [−1, 1] under the weight

𝜔(𝑥) = (1 − 𝑥ɞ)−ȯ/ɞ (57)

and the corresponding abscissas for an approximation with 𝑁 coefficients are the zeros of 𝑇Թ(𝑥).

Definition: The roots grid is the set of 𝑁 collocation points for Chebyshev polynomials
given by the roots of cos(𝑁 arccos(𝑥)),

𝑥Վ = cos π
2

2𝑖 + 1
𝑁 ও , 𝑖 = 0, ..., 𝑁 − 1 (58)

Lobatto showed that the grid composed of the extrema of 𝑇Թ(𝑥) along with the endpoints −1 and
1 permits an integration mechanism similar to Gaussian quadrature, and thus can also be used as
collocation points for the pseudospectral method with Chebyshev polynomials (Boyd, 2000).

Definition: The extrema grid is a set of 𝑁 + 1 collocation points for Chebyshev polynomials
given by the extrema of cos(𝑁 arccos(𝑥)) along with −1 and 1,

𝑥Վ = cos π 𝑖
𝑁 ও , 𝑖 = 0, ..., 𝑁 (59)

The extrema grid is useful because it contains the endpoints of the interval, allowing the explicit impo-
sition of boundary conditions at those points. The roots grid is better suited if there is a singularity at
an endpoint.

While both of these grids discretize the interval 𝑥 ∈ [−1, 1], they can be used to model any any finite
interval 𝜉 ∈ [𝑎, 𝑏] via the affine transformation

𝑥 = 𝜉 − 𝑎 + 𝑏
2 ও  2

𝑏 − 𝑎ও (60)

3.2 Constructing the pseudospectral matrices

The differential equation is enforced on the chosen grid by solving the (𝑁 + 1) by (𝑁 + 1) system

𝐻 ⋅ 𝛼 = 𝑓 (61)

where

𝐻ՎՏ = 𝐻𝜙Տ(𝑥Վ) (62)

𝑓Վ = 𝑓(𝑥Վ) (63)

The same framework can be used to directly solve for the values of 𝑢Թ on the grid, since the same
equations can be enforced on the cardinal expansion of 𝑢Թ. That is, writing

𝑢Թ =
Թ


Փ=ɱ

𝑢Փ𝐶Փ(𝑥) (64)

leads to the equivalent system
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𝐻 ⋅ 𝑢 = 𝑓 (65)

where

𝐻ՎՏ = 𝐻𝐶Տ(𝑥Վ) (66)

The pseudospectral matrix 𝐻 is built by adding multiples of the evaluation and differentiation ma-
trices for the proper basis set and grid, as specified by the differential operator 𝐻. Spatially varying
coefficients are trivially incorporated into the construction by evaluating them at 𝑥Վ in the 𝑖-th row.

Definition: The evaluation matrix 𝐸 for the basis set {𝜙Վ} on the grid {𝑥Վ} is given by

𝐸ՎՏ = 𝜙Տ(𝑥Վ) (67)

and is used to find the values of the approximation on the grid:

𝑢 = 𝐸 ⋅ 𝛼 (68)

The cardinal evaluation matrix is simply the identity, while the Chebyshev evaluation matrix is easily
constructed via the trigonometric definition of the Chebyshev polynomials.

Definition: The 𝑝-th order differentiation matrix 𝐷Օ for the basis set {𝜙Վ} on the grid {𝑥Վ}
is given by

𝐷Օ
ՎՏ = 𝜙(Օ)

Տ (𝑥Վ) (69)

and is used to find the 𝑝-th derivative of the approximation on the grid:

𝑢(Օ) = 𝐷Օ ⋅ 𝛼 (70)

The terms of the Chebyshev differentiation matrix can be evaluated using the Chebyshev recurrence
relation, or by using the chain rule in conjunction with the trigonometric definition, as we’ll outline here.
With the change of variables 𝑥 = cos(𝜃), the derivative operator becomes

d
d𝑥 → d𝜃

d𝑥
d
d𝜃 = −1

sin(𝜃)
d
d𝜃 (71)

and so the derivatives of the Chebyshev polynomials can be written as

d𝑇Փ
d𝑥 = 𝑛 sin(𝑛𝜃)

sin(𝜃) (72)

dɞ𝑇Փ
d𝑥ɞ = −𝑛ɞ cos(𝑛𝜃)

sinɞ(𝜃) + 𝑛 sin(𝑛𝜃) cos(𝜃)
sinɘ(𝜃) (73)

for the interior points, and can be evaluated at the endpoints using L’Hopital’s rule, giving

dՕ𝑇Փ
d𝑥Օ (±1) = (±1)Փ+Օ

Օ−ȯ

Ր=ɱ

𝑛ɞ − 𝑘ɞ

2𝑘 + 1 (74)
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The derivatives of the cardinal functions on the roots grid are

d𝐶Տ
d𝑥 (𝑥Վ) =

⎧
⎨⎩

𝑥Տ
2(1 − 𝑥ɞ

Տ) 𝑖 = 𝑗

(−1)Վ+Տ
అ(1 − 𝑥ɞ

Տ)/(1 − 𝑥ɞ
Վ )

𝑥Վ − 𝑥Տ
𝑖 ≠ 𝑗

(75)

and the derivatives on the extrema grid are

d𝐶Տ
d𝑥 (𝑥Վ) =

⎧
⎨⎩

(1 + 2𝑁ɞ)/6 𝑖 = 𝑗 = 0

−(1 + 2𝑁ɞ)/6 𝑖 = 𝑗 = 𝑁

− 𝑥Տ
2(1 − 𝑥ɞ

Տ) 𝑖 = 𝑗, 0 < 𝑗 < 𝑁

(−1)Վ+Տ 𝑐Վ
𝑐Տ(𝑥Վ − 𝑥Տ) 𝑖 ≠ 𝑗

(76)

𝑐Վ = ৎ 2 𝑖 = 0, 𝑁
1 𝑖 = 1, ..., 𝑁 − 1 (77)

as given in the appendix of Boyd. Higher derivatives for the cardinal bases can be constructed by repeat-
edly dotting 𝐷ȯ with itself, since the values on the grid are the same as the cardinal series coefficients.

For problems defined on the interval 𝜉 ∈ [𝑎, 𝑏], the affine transformation to the Chebyshev domain
includes a scaling factor of 2/(𝑏 − 𝑎), so the derivative matrices must be scaled from those on the regular
domain as

𝐷Օ
ᆞ

=  2
𝑎 − 𝑏ও

Օ
𝐷Օ (78)

3.3 Generalized eigenvalue equations

In addition to the boundary value problems outlined so far, the pseudospectral framework can also be
used to solve generalized eigenvalue problems of the form

𝐻𝑢 = 𝜆𝐺𝑢 (79)

where 𝐻 and 𝐺 are linear differential operators and 𝜆 is an unknown eigenvalue. Such systems can be
written in matrix form as

𝐻 ⋅ 𝛼 = 𝜆𝐺 ⋅ 𝛼 (80)

𝐻ՎՏ = 𝐻𝜙Տ(𝑥Վ) (81)

𝐺ՎՏ = 𝐺𝜙Տ(𝑥Վ) (82)

This system can then be solved for the unknown coefficients 𝛼 using routines commonly found in
linear algebra libraries.
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3.4 Implementing boundary conditions

There are two main strategies for implementing boundary conditions: boundary bordering and basis
recombination.

Definition: The boundary bordering method consists of replacing the collocation condition
(i.e. the requirement that the differential equation is satisfied) near the boundaries with
enforcement of the boundary conditions.

The boundary bordering method simply entails replacing the 𝑖-th row of the pseudospectral system with
the boundary condition at 𝑥Վ. For multiple conditions at the same point, the collocation requirement
for the nearest neighboring points are replaced with the additional conditions.

This method is a straightforward way of implementing many forms of boundary conditions. For
instance, implementing the inhomogeneous Dirichlet condition at the right boundary

𝑢(𝑥ɱ) = 𝛼 (83)

is achieved by setting

𝐻ɱՏ = 𝜙Տ(𝑥ɱ), 𝑗 = 0, ..., 𝑁 (84)

𝑓ɱ = 𝛼 (85)

To additionally implement the inhomogeneous Neumann condition

d𝑢
d𝑥(𝑥ɱ) = 𝛽 (86)

we replace the collocation condition at 𝑥ȯ by setting

𝐻ȯՏ = d𝜙Տ
d𝑥 (𝑥ɱ), 𝑗 = 0, ..., 𝑁 (87)

𝑓ȯ = 𝛽 (88)

If the set of basis functions already satisfies the desired boundary conditions, then no adjustments
would be necessary.

Definition: The basis recombination method consists of using linear combinations of the
𝑁 + 1 basis functions to form a new set of 𝑁 + 1 − 𝐵 basis functions that individually satisfy
𝐵 boundary conditions.

The pseudospectral method on 𝑁+1−𝐵 of the collocation points, using the recombined basis functions,
will produce “recombined” coefficients which can be used to construct the spectral coefficients of an
approximate solution satisfying the boundary conditions.

For instance, for homogeneous Dirichlet conditions at both endpoints, we could use the basis

𝜙Փ(𝑥) =
⎧
⎨⎩

𝑇Փ(𝑥) − 1 𝑖 = 2, 4, ...

𝑇Փ(𝑥) − 𝑥 𝑖 = 3, 5, ...
(89)

since these functions individually satisfy 𝜙Վ(−1) = 𝜙Վ(1) = 0. Solving the resulting system on the points
{𝑥Վ ∶ 𝑖 = 1, ..., 𝑁 − 1} yields the recombined coefficients {𝛼Վ ∶ 𝑖 = 2, ..., 𝑁}. The Chebyshev coefficients
of the solution can then be reconstructed from the definition of the this “double-Dirichlet” basis as
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𝑎Փ =

⎧
⎨⎩

−
ɞՎ≤Թ

∑
Վ=ȯ

𝛼ɞՎ 𝑛 = 0

−
(ɞՎ+ȯ)≤Թ

∑
Վ=ȯ

𝛼ɞՎ+ȯ 𝑛 = 1

𝛼Փ 𝑛 = 2, ..., 𝑁

(90)

Examining the expression for the derivatives of the Chebyshev polynomials at the endpoints, one can
construct the following basis for homogeneous Neumann conditions at both endpoints:

𝜙Փ(𝑥) =
⎧
⎨⎩

1 𝑖 = 0

𝑇Փ(𝑥) −  𝑖
𝑖 + 2ও

ɞ
𝑇Փ+ɞ(𝑥) 𝑖 = 1, ..., 𝑁 − 2

(91)

Basis recombination produces slightly smaller matrices than boundary bordering, but the latter is
easier to implement for more complicated boundary conditions. Basis recombination is preferable in
eigenvalue problems unless the boundary conditions involve the eigenvalues, since numerical eigenvalue
solvers are best suited to systems with the eigenvalue in every row (Boyd, 2000).

3.5 Solving systems of equations

The pseudospectral framework can also be easily extended to systems of equations. A system of 𝑀
equations for 𝑀 unknown functions is formed using the block matrices

𝐾 ⋅ 𝐴 = 𝐹 (92)

𝐾 is a matrix of size (𝑀(𝑁 + 1)) × (𝑀(𝑁 + 1)), made up of submatrices 𝐾ՐӱՑ of size (𝑁 + 1) × (𝑁 + 1)
that represent the differential operator acting on the 𝑙-th variable in the 𝑘-th equation. 𝐴 is a vector of
length 𝑀(𝑁 + 1), made up of length 𝑁 + 1 subvectors 𝐴Ց that are the coefficients of the 𝑙-th variable.
For boundary value problems, 𝐹 is also a vector of length 𝑀(𝑁 + 1) whose 𝑙-th subvector is the right-
hand-sides of the 𝑙-th equation. This formulation can also be extended to eigenvalue problems, where
the right-hand side is another block matrix representing all the terms involving the eigenvalue.

For example, consider the following system for the two unknown functions 𝑢 and 𝑣, whose coefficients
are given by {𝛼Վ} and {𝛽Վ}, respectively:

𝐻ȯ𝑢 + 𝐻ɞ𝑣 = 𝑓ȯ (93)

𝐻ɘ𝑢 + 𝐻ȃ𝑣 = 𝑓ɞ (94)

The system matrices and vectors are then given by

𝐾 = া𝐻1 𝐻2
𝐻3 𝐻4ি (95)

𝐴 = া𝛼
𝛽ি (96)
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𝐹 = া𝑓ȯ
𝑓ɞ

ি (97)

4 ODE Examples
The pseudospectral method of solving linear ordinary differential equations as described in § 3 is applied
to several problems. In the first example, finding the eigenmodes of a plucked string, analytic solutions
exist and allow us to examine the exact errors of our pseudospectral approach. In the second and third
examples, we find the normal modes of two astrophysical flows by following published results.

4.1 Plucked string

To verify the implementation of the algorithms described above, we examined the eigenvalue equation
for disturbances to a string fixed at the ends of the interval [0, 1]:

dɞ𝑦
d𝑥ɞ + 𝜆𝑦 = 0 (98)

𝑦(0) = 𝑦(1) = 0 (99)

The corresponding pseudospectral system was set up using the double-Dirichlet recombined basis on
the extrema grid. The system takes the form described in § 3.3:

𝐻 ⋅ 𝛼 = 𝜆𝐺 ⋅ 𝛼 (100)

with

𝐻 = 𝐷ɞ (101)

𝐺 = −𝐸 (102)

The exact eigenmodes of the equation are

𝑦Տ = sin(π𝑗𝑥), 𝑗 = 1, 2, ... (103)

with corresponding eigenvalues

𝜆Տ = 𝜋ɞ𝑗ɞ (104)

The pseudospectral system was solved with 32 and 64 points. Figure 3 shows the absolute errors in the
numerically computed eigenvalues. We note that for both resolutions, roughly the first 𝑁/2 eigenvalues
have an “acceptable” error of less than 0.01 and roughly the first 𝑁/3 are accurate to within roundoff
error. Higher eigenvalues are not accurately computed because the corresponding eigenfunctions are not
well resolved by the modes included in the calculation. Figure 4 compares the 5th and 20th eigenmodes,
as computed with 32 collocation points, to the corresponding exact solutions. The 20th mode is not
sufficiently resolved by the grid, yielding a numerically spurious eigenvalue whose accuracy can only be
improved by increasing the resolution.

These results closely match those in § 7.3 of Boyd, where the same problem is examined using 16 and
32-point calculations.
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Figure 3: Errors in the eigenvalues of a plucked string as computed with 32 and 64-point pseudospectral
discretizations.

Figure 4: Exact and computed eigenmodes of a plucked string as found using a 32-point pseudospectral
discretization.

4.2 Stratified magnetorotational instability

The magnetorotational instability (MRI) is a linear instability that occurs in differentially rotating discs
threaded by a vertical magnetic field. It was discovered in 1991 by Balbus and Hawley, and leads
to magnetohydrodynamic (MHD) turbulence capable of transporting significant amounts of angular
momentum through the disc. Simulations of the MRI in unstratified shearing boxes are dominated by
planar channel flows, and Latter et al. (2010) show that such modes also exist in stratified disc models,
and examine their vertical structure using pseudospectral techniques.

They begin with the ideal MHD equations in the shearing sheet approximation and a corresponding
equilibrium state with a vertical background magnetic field. They they introduce non-linear perturba-
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tions to the background velocity and magnetic field given by

𝑢ՈՍ = 𝑏𝑢ɱ𝐹 exp(𝑠𝑡) ६𝑒՝ cos(𝜃) + 𝑒՞ sin(𝜃)७ (105)

𝐵ՈՍ = 𝑏𝐵ɱ𝐺 exp(𝑠𝑡) ६𝑒՝ sin(𝜃) − 𝑒՞ cos(𝜃)७ (106)

where 𝑏 is the ratio between the initial perturbations and the background velocity and magnetic field
amplitudes, 𝑢ɱ and 𝐵ɱ, 𝑠 is the growth rate, 𝜃 describes the flow’s orientation, and 𝐹 and 𝐺 are
dimensionless envelope functions that depend on the height 𝑧 out of the disc. Linearizing the governing
equations leads to a system for the envelop functions

𝐹 = − 1
𝐾ℎ

d𝐺
d𝑧 (107)

𝐺 = 1
𝐾

d𝐹
d𝑧 (108)

where ℎ is a dimensionless function describing the vertical density profile of the disc, 𝐾 is the unknown
vertical wavenumber, and 𝐺 → 0 at the boundaries of the disc. For a polytropic disc with an adiabatic
index of 5/3, the density profile is ℎ = (1 − 𝑧ɞ/𝐻ɞ)ɘ/ɞ, where 𝐻 is the height of the surface of the disc.

We solved for the eigenmodes in this case by writing the system as a single second order equation

dɞ𝐹
d𝑧ɞ + 𝐾ɞℎ𝐹 = 0 (109)

d𝐹
d𝑧 (±1) = 0 (110)

and applying the pseudospectral method with the double-Neumann recombined basis on the extrema
grid with 128 points. Since we do not have analytical answers for comparison, the system was also solved
using 160 grid points. We then calculated the eigenvalue drift

𝛿Տ = |𝜆Տ(𝑁ȯ) − 𝜆Տ(𝑁ɞ)|/𝜎Տ (111)

where the normalization is the difference between adjacent eigenvalues

𝜎Տ =
⎧
⎨⎩

|𝜆ȯ(𝑁ȯ) − 𝜆ɞ(𝑁ȯ)| 𝑗 = 1

(|𝜆Տ(𝑁ȯ) − 𝜆Տ−ȯ(𝑁ȯ)| + |𝜆Տ+ȯ(𝑁ȯ) − 𝜆Տ(𝑁ȯ)|)/2 𝑗 > 1
(112)

The eigenvalue drift provides a measurement of how much increasing the resolution affects the eigenvalues
relative to the spacing between them, and is plotted in Figure 5. Since the eigenvalues of well-resolved
eigenmodes should be insensitive to increases in the resolution, we conclude that the first 40 eigenmodes
(those with very small drifts) are properly resolved.

The first four and 10th eigenfunctions of 𝐹 (solved for directly) and 𝐺 (from Equation (108)) as
computed with 128 grid points are shown in Figure 6. The eigenfunctions and corresponding eigenvalues
(wavenumbers) match those computed by Latter et al. via a shooting method. They go on to confirm the
growth of such modes using 1D MHD simulations, and study the parasitic instabilities that eventually
destroy the growing channel modes and result in turbulence.
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Figure 5: Eigenvalue drifts between 128 and 160-point pseudospectral approximations to the eigenmodes
of the MRI in a stratified disc.

Figure 6: Eigenmodes of the MRI in a stratified disc as computed with a 128-point pseudospectral
approximation. 𝐹 and 𝐺 are envelope functions describing the vertical structure of perturbations to the
background velocity and magnetic fields, respectively.
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4.3 Plane-parallel heat-flux buoyancy instability

X-ray emission from the intracluster medium (ICM) indicates that galaxy cluster cores should be cooling
on timescales substantially shorter than the Hubble time. Corresponding cooling flows into the cores
are not observed, however, so some other heating mechanism must be maintaining the temperature in
the core. Since the ICM is a weakly collisional plasma (the ion gyroradius is much smaller than the
collisional mean free path of particles), heat conduction occurs mainly along magnetic field lines. Along
with the radial temperature gradient, this leads to a heat-flux driven buoyancy instability (HBI) which
may prevent heat conduction into the core via field-line insulation.

The weakly collisional nature of the ICM also leads to strong pressure anisotropy with respect to
the local magnetic field. Latter and Kunz (2012) study how this modifies HBI modes in a plane-parallel
atmosphere model that aims to capture the radial structure of the ICM. They begin with an equilibrium
state calculated from the Braginskii-MHD equations, and introduce two-dimensional perturbations

𝜌ȯ, 𝑇ȯ, 𝑣ȯ = (𝑢ȯ, 0, 𝑤ȯ), 𝐵ȯ = (−d𝐴ȯ
d𝑧 , 0, d𝐴ȯ

d𝑥 ) ∝ 𝑓(𝑧) exp(𝜎𝑡 + i𝑘𝑥) (113)

to the density, temperature, velocity field, and magnetic field, respectively, where 𝜎 is a complex growth
rate and 𝑘 is a real wavenumber. The resulting system, after linearization and non-dimensionalization,
is

𝜎 𝜌ȯ
𝜌ɱ

= −i𝑘𝑢ȯ − নd ln(𝜌ɱ)
d𝑧 + d

d𝑧  𝑤ȯ (114)

𝜎𝑢ȯ = −i𝑘𝑇ɱ ন𝜌ȯ
𝜌ɱ

+ 𝑇ȯ
𝑇ɱ

 + 2
𝛽(0)𝜌ɱ

ন𝑘ɞ − dɞ

d𝑧ɞ  𝐴ȯ − i𝑘
ℛ𝑒

𝑇 ȁ/ɞ
ɱ
𝜌ɱ

2
3

d𝑤ȯ
d𝑧 − 1

3i𝑘𝑢ȯও (115)

𝜎𝑤ȯ = −𝑇ɱ
d
d𝑧

𝜌ȯ
𝜌ɱ

− 𝑇ɱ d ln 𝑝Ք
d𝑧 + d

d𝑧 ও 𝑇ȯ
𝑇ɱ

+ 2
ℛ𝑒

𝑇 ȁ/ɞ
ɱ
𝜌ɱ

5
2

d ln 𝑇ɱ
d𝑧 + d

d𝑧 ও 2
3

d𝑤ȯ
d𝑧 − 1

3i𝑘𝑢ȯও (116)

𝜎 3
2

𝑇ȯ
𝑇ɱ

= −i𝑘𝑢ȯ − 3
2

d ln 𝑇ɱ
d𝑧 + d

d𝑧 ও 𝑤ȯ + 1
𝑝ɱ𝒫𝑒 ম dɞ

d𝑧ɞ ন𝑇 ɑ/ɞ
ɱ

𝑇ȯ
𝑇ɱ

 + 𝑞Շi𝑘d𝐴ȯ
d𝑧 য (117)

𝜎𝐴ȯ = −𝑢ȯ (118)

where

𝑇ɱ = (1 + 𝜁𝑧)ɞ/ɑ (119)

𝑃ɱ = exp খ−7
5

𝐺
𝜁 ॖ(1 + 𝜁𝑧)ȁ/ɑ − 1ॗগ (120)

𝜌ɱ = 𝑝ɱ
𝑇ɱ

(121)

are the background temperature, pressure, and density profiles, with 𝜁 = [(𝑇ɱ(1)/𝑇ɱ(0))ɑ/ɞ − 1] and
𝑞Շ = −(2/7)𝜁 measuring the heat flux through the atmosphere. The Reynolds and Peclet numbers
control the strength of viscous and thermal transport, and can be written as ℛ𝑒 = 2.08𝐺/𝐾 and
𝒫𝑒 = 0.042𝐺/𝐾, where 𝐺 is the number of thermal-pressure scale heights in our model and 𝐾 is ratio
of this scale height to the particle mean free path. Finally, 𝛽 is the plasma beta. Our calculations use
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𝛽(0) = 10ȁ, 𝐺 = 2, 𝐾 = 1/1500, and 𝑇ɱ(1)/𝑇ɱ(0) = 2.5.
Not allowing penetration at the boundaries results in homogeneous Dirichlet conditions for 𝑤ȯ. Con-

straining the magnetic field to be vertical at the boundaries results in homogeneous Neumann conditions
on 𝐴ȯ and 𝑢ȯ. Enforcing constant temperatures at the boundaries, 𝑇(0) = 𝑇ɱ(0) and 𝑇(1) = 𝑇ɱ(1),
results in homogeneous Dirichlet conditions for 𝑇ȯ. The corresponding recombined bases were used, and
this system of five equations for the eigenvalues 𝜎 was solved as described in § 3.5.

In Figure 7 we plot the real part of the 10 largest eigenvalues for a range of horizontal wavenumbers.
The calculation was repeated while increasing the resolution until the depicted growth rates were stable.
The results for 128 grid points are shown. Coalescence into conjugate pairs and bifurcation into purely
real modes is seen.

Figure 7: Growth rates of HBI modes in a plane parallel atmosphere, as computed with 128-point
pseudospectral approximations. Blue dots indicate purely real growth rates, while red dots indicate
conjugate pairs.

Figure 8 shows the eigenfunctions of the fourth fastest growing mode with a horizontal wavenumber
𝑘 = 250. The plots indicate that the perturbations are largely confined to small heights, due to steeper
temperature gradients and lower viscous damping there. These results match those shown in Figures 2
and 3 of Latter and Kunz (2012). They conclude that the HBI and associated field-line insulation may
be limited to just the innermost regions of cluster cores, allowing heat conduction to balance radiative
losses in most of the surrounding volume.

5 Solving partial differential equations
This section outlines the use of spectral methods for solving initial value problems with one spatial and
one temporal dimension. The approach is to construct the time derivative by spectrally evaluating any
spatial derivatives in the problem, and then using an explicit ODE integrator to march the solution
forward in time2. These steps can take place either in the modal space (“k-space”) using the Chebyshev
coefficients, or equivalently in the nodal space (“x-space”) using the values on the grid. The choice

2Implicit methods are also commonly used. They are more stable than explicit methods for longer timesteps, but require
solving a dense system at every iteration
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Figure 8: The fourth fastest growing eigenmode of the HBI in a plane parallel atmosphere, as computed
with 250-point pseudospectral approximations. The solid lines represent the real parts of the eigenmodes,
and the solid lines represent the imaginary parts.

of differentiation and integration spaces may depend on the form of the differential equation and the
problem size.

5.1 Constructing the time derivative

We consider an initial value problem of the form:

d𝑢
d𝑡 = 𝐻𝑢 + 𝑓(𝑥) (122)

where 𝐻 is a differential operator (not necessarily linear) and 𝑓 is a known function. Constructing any
necessary spatial derivatives in x-space simply involves using the cardinal differentiation matrices as
described in § 3.2, i.e.

𝑢(Օ) = 𝐷Օ ⋅ 𝑢 (123)

Constructing derivatives in k-space can be achieved via a recurrence relation (Boyd, 2000). Writing

d𝑢
d𝑥 =

Թ

Փ=ɱ

𝑏Փ𝑇Փ (124)

we can compute the coefficients of the derivative from those of the function itself, in descending order,

22



as

𝑏Թ = 0 (125)

𝑏Թ−ȯ = 2𝑁𝑎Թ (126)

𝑏Փ = 2(𝑛 + 1)𝑎Փ+ȯ + 𝑏Փ+ɞ, 𝑛 = 𝑁 − 2, ..., 1 (127)

𝑏ɱ = 𝑎ȯ + 𝑏ɞ/2 (128)

Higher derivatives are computed by repeated application of the recursion relation.
For 𝑁 collocation points, the k-space recursion derivative has an 𝒪 (𝑁) cost while the dense matrix

multiplication in the x-space derivative is a much more expensive 𝒪 ऺ𝑁ɞऻ operation. However, any non-
linear terms or terms involving spatially varying coefficients should be computed in x-space with point-
by-point multiplication (𝒪 (𝑁)) rather than in k-space, where a Cauchy product is required (𝒪 ऺ𝑁ɞऻ).
The ideal strategy, at least for large 𝑁 , would be to compute derivatives in k-space and non-linear
products in x-space. However, transitioning from the series coefficients to the values on the grid via the
evaluation matrix is also an 𝒪 ऺ𝑁ɞऻ operation.

The solution lies in the trigonometric definition of the Chebyshev polynomials. Since the Chebyshev
collocation points are evenly spaced in 𝜃 = arccos(𝑥), the series coefficients of the cosine series of 𝑢(cos(𝜃))
can be computed from the grid values, and vice versa, via the discrete cosine transform3. On the extrema
grid, for instance, we have

𝑢Տ =
Թ


Փ=ɱ

𝑎Փ cos π𝑗𝑛
𝑁 ও , 𝑗 = 0, ..., 𝑁 (129)

𝑎Փ = 2
𝑐Փ𝑁

Թ

Տ=ɱ

𝑢Տ
𝑐Տ

cos π𝑗𝑛
𝑁 ও , 𝑛 = 0, ..., 𝑁 (130)

where 𝑐Տ = 1 + 𝛿Տɱ + 𝛿ՏԹ. The transform itself can be computed in 𝒪 (𝑁 ln(𝑁)) time using a modified
version of the Fast Fourier Transform (FFT).

5.2 Explicit time marching

Once the time derivatives have been constructed, the problem has been transformed into a system of 𝑁
ordinary differential equations in time, which can be integrated using a variety of methods, including
multistep and Runge-Kutta algorithms. We generally make use of embedded Runge-Kutta algorithms,
which automatically adjust the timestep to try to maintain a desired accuracy.

A 𝑞-th order Runge-Kutta algorithm integrates a system by using a linear combination of the deriva-
tive as evaluated at 𝑞 intermediate stages, and can be thought of as higher-order generalizations of the
simple forward Euler algorithm

𝑢(𝑡 + 𝑑𝑡) = 𝑢(𝑡) + ℎd𝑢
d𝑡 (𝑡) (131)

with timestep ℎ.
A 𝑞-th order Runge-Kutta algorithm will have an error per iteration of 𝜖 ∼ 𝒪 ऺℎՖ+ȯऻ. An embedded

Runge-Kutta scheme generally uses 𝑞 + 1 stages to construct one 𝑞-th order and one (𝑞 + 1)-th order
3The type-1 DCT is used for the extrema grid, and the type-2 DCT is used for the roots grid.
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step, and takes the difference between them as 𝜖Ֆ, the error of the 𝑞-th order step. Assuming the error
behaves like 𝐶ℎՖ+ȯ for some constant 𝐶, we find

𝐶 ≈ 𝜖Ֆ
ℎՖ+ȯ (132)

This approximation can then be used to determine a new timestep, ℎՊ, that would produce an error
equal to a user-specified tolerance per unit timestep, 𝜏 :

𝐶ℎՖ+ȯ
Պ = 𝜏ℎՊ (133)

⟹ ℎՊ = ॼ 𝜏
𝐶 ॽ

ȯ/Ֆ
(134)

If the error 𝜖Ֆ was less than 𝜏ℎ, then the solution is updated using the 𝑞-th order step, and the next step
is taken using the new timestep ℎՊ. Otherwise, the step is rejected and recomputed with the timestep
ℎՊ.

5.3 Modified grids

For equations with higher order spatial derivatives, the stability of explicit methods is severely limited
by the spurious eigenvalues of the Chebyshev differentiation matrices. The size of the largest eigenvalues
of 𝐷 scale as 𝒪 ऺ𝑁ɞऻ, meaning that the limiting timestep for stability scales as 𝒪 ऺ𝑁−ɞՕऻ for an equation
with derivatives up to order 𝑝.

The scaling of the spurious eigenvalues is thought to be related to the bunching of the Chebyshev
collocation points near the endpoints (the smallest spacing on the Chebyshev grid goes as 𝒪 (𝑁−2)).
Kosloff and Tal-Ezer (1993) propose a remapping of the collocation points via

𝜉Վ = arcsin(𝛼𝑥Վ)
arcsin 𝛼 (135)

This mapping produces an evenly spaced grid when 𝛼 = 1, and reduces to the original Chebyshev
grid when 𝛼 = 0. They also prove that if

𝛼 = 1 − 𝐶
𝑁ɞ + 𝒪 ऺ𝑁−ɘऻ (136)

for some constant 𝐶, then the minimum spacing on the grid scales like 𝒪 (𝑁−1) as 𝑁 → ∞. This is
postulated to reduce the largest eigenvalue of the differentiation matrix to 𝒪 (𝑁), and hence improve the
limiting timestep for a 𝑝-th order equation to 𝒪 (𝑁−Օ). We verify these scalings in Figure 9, where we
plot the magnitude of the largest eigenvalues of 𝐷 for the extrema grid and for the remapped grid using
𝛼 = cos(1/𝑁).

There is, however, a major drawback to this grid: the mapping in Equation (135) has branch points
at ±𝛼−ȯ. Thus, sending 𝛼 → 1 improves the time-marching stability as the points spread more uniformly
across the domain, but simultaneously decreases the asymptotic rate of geometric convergence as the
poles of the mapping approach the interval [−1, 1]. We verified this by expanding the entire function

𝑢(𝑥) = cos(π𝑥) (137)

using 64 points over the original Chebyshev extrema grid, the remapped grid with 𝛼 = cos(1/2), and the
remapped grid with 𝛼 = cos(1/𝑁). The magnitudes of the (even) coefficients are plotted in Figure 10. As
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Figure 9: The magnitude of the largest eigenvalues of the differentiation matrices for the Chebyshev
extrema grid and the remapped Kosloff grid.

expected, the series converges supergeometrically on the original grid. However, it converges much slower
on the remapped grids, at rates approaching the expected asymptotic values satisfying cosh(𝜇) = 1/𝛼.

Figure 10: The convergence of the expansion of the entire function 𝑢(𝑥) = cos(π𝑥) on the Chebyshev
extrema grid and the remapped Kosloff grid. Only the even coefficients are shown, since the odd coeffi-
cients are all zero by symmetry. The dashed curve indicates the expected asymptotic rate of geometric
convergence for the 𝛼 = cos(1/2) case.

Boyd suggests the use of a constant remapping parameter, such as 𝛼 = cos(1/2) as a compromise
between spectral accuracy and stability for larger timesteps. The locations of the eigenvalues of 𝐷 in
the complex plane, for the original extrema grid and the remapped grid with this value of 𝛼, are shown
in Figure 11, demonstrating that a substantial reduction in the eigenvalue magnitudes can be achieved
while still retaining acceptable geometric convergence as shown in Figure 10.
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Figure 11: The eigenvalues of 256-point differentiation on the Chebyshev extrema grid and the remapped
Kosloff grid.

5.4 Implementing boundary conditions

When implicitly solving for the 𝑁 series coefficients, it is possible to produce a solution that simultane-
ously satisfies the collocation condition at 𝑁 − 𝐵 collocation points as well as 𝐵 boundary conditions.
Using an explicit method requires a different strategy. Since the explicitly computed time derivative
will not generally satisfy the desired boundary conditions, after every iteration4 the solution must be
modified to satisfy the boundary conditions.

One method to satisfy the Dirichlet condition,

𝑢(𝑥Վ) = 𝛼 (138)

is to just explicitly set 𝑢Վ = 𝛼. If 𝑢Վ = 𝜒 before updating the new solution, then this is equivalent to
adding (𝛼 − 𝜒)𝐶Վ to solution. Using Equation (130), we can perform such an update in k-space as

𝑎Փ → 𝑎Փ + 2(𝛼 − 𝜒)
𝑐Վ𝑐Փ𝑁 cos π𝑖𝑛

𝑁 ও (139)

possibly avoiding an FFT just to enforce the boundary condition. While this global coefficient adjustment
only changes the value of the solution at 𝑥Վ, it introduces a small error into the residuals at all of the
grid points, since the derivative of 𝐶Վ on the grid is nonzero (see Figure 12).

Satisfying the Neumann condition

𝑢(𝑥Վ) = 𝛽 (140)

is more complicated. Common strategies include modifying the value at the boundary according to a low-
order finite difference approximation5 or by modifying the highest coefficient 𝑎Թ to meet the condition.
Here, the last coefficient is modified since 𝑇Թ has the largest derivative at the boundaries, meaning 𝑎Թ
would have to be adjusted by a smaller amount than would any other coefficient.

4and at every stage of a Runge-Kutta step
5For instance, setting Վ = Վ±ȯ − (֓Վ±ȯ − ֓Վ)ᆻ
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Figure 12: The first three cardinal polynomials on the 8-point extrema grid.

Wang et al. (1993) point out that this method modifies the value at every grid point by the same
magnitude, since the grid points are located at the extrema of 𝑇Թ. Instead, they propose modifying
the value at 𝑥Վ so that the interpolating polynomial satisfies the condition, as in the Dirichlet case. If
Ǡ՚
Ǡ՝ (𝑥Վ) = 𝛾 before adjustment, the condition is enforced by adding 𝛿𝐶Վ to the solution, where

𝛿 = (𝛽 − 𝛾) d𝐶Վ
d𝑥 (𝑥Վ)ও

−ȯ
(141)

Again, this method perturbs the residuals at the grid points by modifying the derivative there, but this
effect decays as away from the boundary instead of remaining uniform across the grid. It can easily be
implemented in both x-space and k-space just as in the Dirichlet case.

However, if the equation requires a Dirichlet and a Neumann condition to be imposed at the same
grid point, this method fails as it would require two generally incompatible values at the endpoint. After
enforcing the Dirichlet condition by adding a multiple of 𝐶Վ, however, we can still affect the derivative
at the endpoint without changing the value there by adding another cardinal polynomial. The cardinal
polynomial corresponding to the first interior point, 𝐶Տ, where (𝑖, 𝑗) = (0, 1) at the right boundary and
(𝑖, 𝑗) = (𝑁, 𝑁 − 1) at the left, is the natural choice: it has a larger derivative at 𝑥Վ than the other
available cardinal polynomials, meaning the grid adjustment required here is smaller than elsewhere,
and we presume that the boundary conditions should primarily dictate behavior more strongly near the
boundary than away from it. Therefore, after enforcing the Dirichlet condition at 𝑥Վ, we propose to
enforce the Neumann condition there by adding 𝛿𝐶Տ to the solution, where

𝛿 = (𝛽 − 𝛾) নd𝐶Տ
d𝑥 (𝑥Վ)

−ȯ
(142)

Finally, consider a fourth order equation with double Dirichlet and Neumann conditions. The Dirich-
let conditions are imposed by adding multiples of 𝐶ɱ and 𝐶Թ. However, sequentially imposing the
Neumann conditions using 𝐶ȯ and 𝐶Թ−ȯ as described above fails because the derivatives of 𝐶ȯ and
𝐶Թ−ȯ are non-zero at 𝑥Թ and 𝑥ɱ, respectively. Simultaneously enforcing the conditions requires solving
the system
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𝜖ɱ = 𝛿ȯ
d𝐶ȯ
d𝑥 (𝑥ɱ) + 𝛿Թ−ȯ

d𝐶Թ−ȯ
d𝑥 (𝑥ɱ) (143)

𝜖Թ = 𝛿ȯ
d𝐶ȯ
d𝑥 (𝑥Թ) + 𝛿Թ−ȯ

d𝐶Թ−ȯ
d𝑥 (𝑥Թ) (144)

for the necessary grid value adjustments 𝛿ȯ and 𝛿Թ−ȯ, where 𝜖ɱ and 𝜖Թ are the derivative adjustments
required to satisfy the Neumann conditions at the endpoints.

6 PDE Examples
In this section we explicitly evolve several test initial value problems using spectral methods as described
in § 5. First, we examine the one-dimensional wave equation with Dirichlet and Neumann boundary
conditions, and compare our results with the known behavior of such systems. We then explore the
Kuramoto-Sivashinsky and complex Ginzburg-Landau equations, and compare our calculations with
published results.

6.1 Wave equation

The one-dimensional wave equation on a finite domain is given by

dɞ𝑢
d𝑡ɞ = 𝑐ɞ dɞ𝑢

d𝑥ɞ (145)

where 𝑐 is the wave propagation speed. To integrate this system with a Runge-Kutta method, we write
it as the first order system

d𝑢
d𝑡 = 𝑣 (146)

d𝑣
d𝑡 = 𝑐ɞ dɞ𝑢

d𝑥ɞ (147)

We examine the equation over the domain [0, 1] with 𝑐 = 1, and take a right-traveling pulse as our
initial condition:

𝑢ɸȥ = exp ম𝑥 − 0.5
0.1 ও

ɞ
য (148)

𝑣ɸȥ = 𝑐 d𝑢ɸȥ
d𝑥 (149)

Using the extrema grid with 128 points, we integrated up to time 𝑡 = 4 using the 4-th and 5-th
order Cash-Karp embedded Runge-Kutta algorithm, with an error tolerance 𝜏 = 10−ɘ. Space-time
diagrams for simulations with double homogeneous Dirichlet conditions (modeling a fixed string) and
double homogeneous Neumann conditions are shown in Figure 13. The results agree with the expected
analytical solutions that can be constructed using the method of images: in the Dirichlet case, the pulse
reflects off of the boundaries with a change of sign, while in the Neumann case it piles up at the boundary
and recoils with the same sign.

The same calculations were repeated after setting 𝑐 = 1/2 on the intervals [0, 0.3] and [0.7, 1.0]. The
resulting space-time diagrams for Dirichlet and Neumann boundary conditions are shown in Figure 14.
The change in wave speed and amplitude as the pulse crosses the interfaces are apparent, as are reflections
off the interface.
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Figure 13: Wave equation with homogeneous Dirichlet (left) and homogeneous Neumann (right) bound-
ary conditions, as computed on a 128-point Chebyshev extrema grid with a right-traveling Gaussian
pulse initial condition.

Figure 14: Wave equation with homogeneous Dirichlet (left) and homogeneous Neumann (right) bound-
ary conditions with a slower wave speed in the outer regions, as computed on a 128-point Chebyshev
extrema grid with a right-traveling Gaussian pulse initial condition.

The Dirichlet run was repeated with 256 points, and a narrower pulse. The state at 𝑡 = 0.4 is plotted
in Figure 15, when the first reflection has returned to the center of the interval. The peak values of the
reflected and transmitted pulses are -0.3362 and 0.6659, respectively, in agreement with the expected
values of −1/3 and 2/3 from the Fresnel equations to 𝒪 ऺ10−ɘऻ.
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Figure 15: Solution after the initial right-traveling Gaussian pulse reflects off the interface at 𝑥 = 0.7, as
computed with 256 points. The reflected pulse at 𝑥 = 0.5 is traveling left and the transmitted pulse at
𝑥 = 0.8 is traveling right. 𝑐 = 1/2 in the blue regions, and 𝑐 = 1 in the red region.

6.2 Kuramoto-Sivashinsky equation

The generalized Kuramoto-Sivashinsky equation on a domain of length 𝐿 is given by

d𝑢
d𝑡 + 𝜆ȯ

dȃ𝑢
d𝑥ȃ + 𝜆ɞ

dɞ𝑢
d𝑥ɞ + 𝜆ɘ𝑢d𝑢

d𝑥 = 0 (150)

The equation was originally derived as a model for phase turbulence in reaction-diffusion equations and
to study the stability of a planar flame front. It also serves as a model for a variety of cellular instabilities,
including Alfven drift waves and thin flows down inclined planes (Liu and Krstic, 2001).

We can non-dimensionalize the equation by rescaling 𝑢 by 𝑈 , 𝑡 by 𝑇 , and 𝑥 by 𝐿; the resulting
equation is

d𝑢
d𝑡 + 𝛼ȯ

dȃ𝑢
d𝑥ȃ + 𝛼ɞ

dɞ𝑢
d𝑥ɞ + 𝛼ɘ𝑢d𝑢

d𝑥 = 0 (151)

on the domain [0, 1], with

𝛼ȯ = 𝜆ȯ𝑇
𝐿ȃ (152)

𝛼ɞ = 𝜆ɞ𝑇
𝐿ɞ (153)

𝛼ɘ = 𝜆ɘ𝑈𝑇
𝐿 (154)

Hyman and Nicolaenko (1986) systematically studied the transition to chaos in the integral form of
the equation

d𝑤
d𝑡 + 4dȃ𝑤

d𝑥ȃ + 𝛼 dɞ𝑤
d𝑥ɞ + 1

2 d𝑤
d𝑥 ও

ɞ
 = 0 (155)

by varying 𝛼 between 0 and 120, with periodic boundary conditions on the interval [0, 2π].
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Choosing our scalings as 𝐿 = 2π, 𝑇 = 𝐿ȃ/4, and 𝑈 = 𝐿/(𝛼𝑇), we reproduce their configuration (up
to the boundary conditions) by setting 𝛼ȯ = 1, 𝛼ɞ = 𝛼πɞ, and 𝛼ɘ = 1. Instead of periodic boundary
conditions, we take homogeneous Dirichlet and Neumann boundary conditions at both endpoints and
examine the resulting dynamics.

Using 20-point Kosloff grids with 𝛼 = cos(1/2) and the 4/5 Cash-Karp integrator with a tolerance of
𝜏 = 1, we performed 25 simulations with 𝛼 ranging from 0 to 50, starting from the initial condition

𝑢ɸȥ = 1
𝑈 sin(π𝑥)ɞ (156)

The following table contains a comparison of our preliminary results for the solution behavior in this
regime with those reported by Hyman and Nicolaenko using periodic boundary conditions. Due in part
to the harsh timestep limitations on high-order explicit Chebyshev methods, our resolution and error
tolerances were much weaker than the ones used to construct their solutions.

Attracting solution manifolds for the Kuramoto-Sivashinsky equation
Comparison with Fourier-based periodic solutions of Hyman and Nicolaenko (1986)

(Sampling uncertainty indicated in parentheses)
Dirichlet BC Behavior Periodic BC
0 ≤ 𝛼 ≤ 4(1) Global attractor: 0 0 ≤ 𝛼 ≤ 4

4(1) ≤ 𝛼 ≤ 24.5(0.5) Global attractor: essentially sin(2π𝑥) 4 ≤ 𝛼 ≤ 17.3
24.5(0.5) ≤ 𝛼 ≤ 28.5(0.5) Periodic orbit sin(2π𝑥) 17.3 ≤ 𝛼 ≤ 19

28.5(0.5) ≤ 𝛼 ≤ 34(1) Unstable bimodal fixed point 19 ≤ 𝛼 ≤ 22.5
34(1) ≤ 𝛼 ≤ 44(1) Global attractor: essentially sin(4π𝑥) 22.5 ≤ 𝛼 ≤ 43
44(1) ≤ 𝛼 ≤ 49+ Oscillatory & chaotic orbits 43 ≤ 𝛼 ≤ 54

Representative space-time diagrams are also provided in Figure 16. A more detailed study would
certainly be feasible with further optimization of our code and increased computing time.

6.3 Complex Ginzburg-Landau equation

The complex Ginzburg-Landau equation (CGLE) is a second-order partial differential equation that can
be used to model a very wide range of nonlinear dynamical systems. The equation describes the evolution
of the complex wave amplitude 𝐴:

d𝐴
d𝑡 = 𝜇𝐴 + 𝑠d𝐴

d𝑥 + (1 + i𝑏)dɞ𝐴
d𝑥ɞ − (1 + i𝑐)|𝐴|ɞ𝐴, 0 ≤ 𝑥 ≤ 𝐿 (157)

The CGLE is often studied in a periodic geometry where the group velocity term 𝑆 ǠԬ
Ǡ՝ can be removed

by to Galilean transformation. Nana et al. (2009), however, investigate the CGLE in a finite geometry
with homogeneous Dirichlet boundary conditions, a form applicable to a variety of bounded systems.
Nana et al. used a finite-difference scheme to evolve a pulse-like initial condition

𝑢ɸȥ = 𝐴ɱ
(1 + i)

cosh(𝛾(𝑥 − 𝐿/2)) (158)
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Figure 16: Solutions of the Kuramoto-Sivashinsky equation for representative values of 𝛼, as computed
on a 20-point Kosloff grid.

with amplitude 𝐴ɱ = 0.01 and 𝛾 = 100, while varying 𝜇, 𝑠, 𝑏, 𝑐, and 𝐿. We will reproduce two of their
results.

We begin by rewriting the CGLE as a coupled system for the real and imaginary parts of 𝐴. Letting
𝐴 = 𝑢 + i𝑣, the resulting system is

d𝑢
d𝑡 = 𝜇𝑢 + 𝑠d𝑢

d𝑥 + dɞ𝑢
d𝑥ɞ − 𝑏 dɞ𝑣

d𝑥ɞ − (𝑢ɞ + 𝑣ɞ)(𝑢 − 𝑐𝑣) (159)

d𝑣
d𝑡 = 𝜇𝑣 + 𝑠 d𝑣

d𝑥 + dɞ𝑣
d𝑥ɞ + 𝑏dɞ𝑢

d𝑥ɞ − (𝑢ɞ + 𝑣ɞ)(𝑣 + 𝑐𝑢) (160)

𝑢(0) = 𝑢(𝐿) = 𝑣(0) = 𝑣(𝐿) = 0 (161)

Nana et al. describe the results of a simulation using 𝜇 = 0.15, 𝑠 = 0.5, 𝑏 = 0.5, 𝑐 = −3.65, and
𝐿 = 60, where the size of the non-linear dispersion coefficient 𝑐 leads to the emergence of secondary
structures near 𝑥 = 0 and on top of an absolutely unstable global mode. We used the same parameters
with a 64-point Chebyshev representation on the Kosloff grid with 𝛼 = cos(1/2), and the 4/5 Cash-Karp
integrator with error tolerance 𝜏 = 10−ɒ. Our results are displayed in Figure 17; the described structure
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is clearly visible in the amplitude plot.

Figure 17: Amplitude and phase space-time diagrams showing secondary structures forming on top of
an unstable global mode in the complex Ginzburg-Landau equation. The simulation used a 64-point
Kosloff grid with 𝛼 = cos(1/2).

For small group velocities 𝑠 and large length scales 𝐿, Nana et al. report a regime of spatial-
temporal intermittency referred to as “hole-defect chaos” where amplitude depressions separate patches
of chaotically interacting plane waves. We use their parameters 𝑠 = 0.05, 𝜇 = 1, 𝑏 = 0.5, and 𝑐 = −1.76,
but shorten the domain from 𝐿 = 600 to 𝐿 = 200, and resolve it with 200 grid points. Our results are
displayed in Figure 18.

Figure 18: Amplitude and phase space-time diagrams depicting hole-defect chaos in the complex
Ginzburg-Landau equation. The simulation used a 200-point Kosloff grid with 𝛼 = cos(1/2).
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7 Conclusion
We have covered the basic theory and a variety of examples involving the use of Chebyshev spectral
methods to numerically solve differential equations. The algorithms discussed in § 3 can be used to solve
general linear ordinary differential equations with spatially varying coefficients, both in boundary value
and eigenvalue form, and were verified with two recent results from the astrophysical fluids literature.

The methods discussed in § 5 can be used to explicitly evolve non-linear initial value problems with
one space and one time dimension. While utilizing the remapped Kosloff grid improved the timestepping
restrictions in our test problems, moving to an implicit time integration scheme would likely prove
extremely beneficial by maintaining stability with much larger time steps. Such an improvement could
make thoroughly exploring the solution manifolds of the Kuramoto-Sivashinsky equation with Dirichlet
boundary conditions substantially more feasible.
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