
Flexible Spectral Algorithms for Simulating
Astrophysical and Geophysical Flows

by

Keaton James Burns

Submitted to the Department of Physics on May 25, 2018
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Physics

Abstract

Large-scale numerical simulations are key to studying the complex physical systems that
surround us. Simulations provide the ability to perform simplified numerical experiments to
build our understanding of large-scale processes which cannot be controlled and examined
in the laboratory. This dissertation develops a new open-source computational framework,
Dedalus, for solving a diverse range of equations used to model such systems and applies
the code to the study of stellar and oceanic fluid flows.

In the first part, the spectral algorithms used in Dedalus are introduced and the design
and development of the code are described. In particular, the code’s symbolic equation speci-
fication, arbitrary-dimensional parallelization, and sparse spectral discretization systems are
detailed. This project provides the scientific community with an easy-to-use tool that can
efficiently and accurately simulate many processes arising in geophysical and astrophysical
fluid dynamics.

In the second part, Dedalus is used to study the turbulent boundary layers that form
at the interface between marine-terminating glaciers and the ocean. A simplified model
considering the heat transfer from a heated or cooled wall in a stratified fluid is investigated.
We find new scaling laws for the turbulent heat transfer from the wall as a function of the
imposed thermal forcing, with potential implications for the sensitivity of glacier melting to
warming ocean temperatures.

In the third part, Dedalus is used to study the stability of the tidal deformations
experienced by binary neutron stars as they inspiral. We develop a numerical workflow for
determining the weakly nonlinear stability of a tidally forced plane-parallel atmosphere and
verify the results using fully nonlinear simulations. This framework may help determine
whether tidal instabilities can be observed in gravitational wave signatures of binary neutron
stars, which could provide observational constraints on the equation of state of matter above
nuclear densities.

Thesis Supervisor: Nevin N. Weinberg
Title: Associate Professor of Physics

Thesis Supervisor: Glenn R. Flierl
Title: Professor of Oceanography

1

2

Acknowledgments

First, I thank my advisors Nevin Weinberg and Glenn Flierl for their generous support and
supervision as I have jumped between studying algorithms, oceans, and astrophysics over
the past five years. I also thank the other members of my thesis committee, Steven Johnson
and Mark Vogelsberger, for their feedback and suggestions for improving my work.

Benjamin Brown, Daniel Lecoanet, Jeffrey Oishi, and Geoffrey Vasil deserve tremen-
dous thanks for the help andmentorship they have continually provided to me. Working with
them has been a highlight of my time in graduate school, and I look forward to continuing
our collaboration.

Andrew Wells, Ian Hewitt, and Neil Balmforth have advised me on various projects
over the past few summers at theWoodsHole Oceanographic Institute, and I am very grateful
for the broader view of applied math and geophysics that they have imparted. I would also
like to thank Eliot Quataert, Keith Julien, and Jörn Dunkel for their support and advice.

Finally, I would like to thank my parents, my family, and my friends for their help
during my time graduate school. In particular, my fiancée Cristina has been an amazing
source of inspiration and companionship as she has studied for her medical degree. Friends
from home, college, and MIT have made the past five years in Boston extraordinarily fun
and memorable.

During my PhD I have been supported by the MIT Kavli Graduate Fellowship, the
National Science Foundation Graduate Research Fellowship under Grant No. (1122374),
the WHOI Geophysical Fluid Dynamics Fellowship, the MIT PAOC group, and NASA ATP
grant NNX14AB40G.

3

4

Contents

Abstract 1

Acknowledgments 3

0 Thesis outline 7
0.1 The Dedalus Project . 7
0.2 Glacial Meltwater Plumes . 8
0.3 Nonlinear Tidal Instabilities . 8

I The Dedalus Project 11

1 Introduction to Spectral Methods 13
1.1 Spectral representations of functions . 13
1.2 Solving differential equations with spectral methods 16
1.3 Generating sparse spectral methods . 19

2 Design and Implementation of Dedalus 23
2.1 Introduction . 23
2.2 Spectral bases . 27
2.3 Domains . 33
2.4 Fields . 38
2.5 Operators . 40
2.6 Problems . 51
2.7 Solvers . 55
2.8 Analysis and post-processing . 68
2.9 Benchmarks . 70

II Glacial Meltwater Plumes 73

3 Introduction to melt-driven plumes 75

5

3.1 Global ice balances and sea-level rise . 75
3.2 Models of submarine melting . 77
3.3 Governing equations for flow near melting boundaries 78

4 Convection from a heated sidewall in a thermally stratified fluid 81
4.1 Introduction . 81
4.2 Model definition . 82
4.3 Laminar solution and linear stability . 84
4.4 Simulations of unsteady solutions . 88
4.5 Discussion . 91
4.6 Conclusion . 98

III Nonlinear Tidal Instabilities 101

5 Introduction to astrophysical tides 103
5.1 The influence of tides of binary systems . 103
5.2 Estimating tidal dissipation rates . 104
5.3 Probing neutron star interiors . 105

6 Direct simulations of tidal stability thresholds 109
6.1 Introduction . 109
6.2 Background structure . 110
6.3 Governing equations . 111
6.4 Non-adiabatic eigenmodes . 113
6.5 Linear tidal solution . 117
6.6 Weakly nonlinear stability . 119
6.7 Threshold calculations and comparison to simulations 122
6.8 Conclusion . 127

6

Chapter 0

Thesis outline

This dissertation focuses on the development of a numerical framework called Dedalus for
simulating large-scale fluid flows found in nature. During my PhD, I developed a substantial
portion of the Dedalus codebase and applied the code to study problems problems involving
astrophysical and geophysical flows. The dissertation is divided into three parts describing
the codebase, applications to glacial meltwater plumes, and applications to tidal instabilities
in neutron stars.

0.1 The Dedalus Project

The first part describes the design and implementation of the Dedalus codebase. Dedalus
uses a set of algorithms known as global spectral methods which expand variables over
sets of basis functions to discretize and solve partial differential equations (PDEs). These
methods typically provide exponentially increasing accuracy as more modes are added, but
are unable to accommodate complex geometries. However, they are extremely well-suited
to studying lowMach-number flows in simple geometries, such as those commonly found in
astrophysics and geophysics. Spectral methods have been widely used to simulate fluids in
the past, but typically with techniques that require solving dense matrices and in codes that
implement one specific set of equations. In the applied math community, flexible algorithms
producing sparsematrices for general equations have been developed, but principally applied
to small-scale simulations. §1 provides an introduction to spectral algorithms and sparse
techniques.

Dedalus bridges this gap by combining sparse spectral algorithms into a framework for
the efficient solution of large-scale PDEs, as described in §2. The fundamental algorithm
behind Dedalus combines a range of previous work on sparse Chebyshev methods into a
system for producing sparse spectral discretizations of nearly arbitrary systems of PDEs.
This algorithm is an important contribution to the spectral methods community as it provides
a robust and simple way of handling a wide array of equations, and is described in detail
in §2.7. To make this system easily accessible, I have implemented a parsing system which

7

allows users to symbolically specify systems of differential equations, as described in §2.6.
The parser manipulates these equations into a generalized structure which is then processed
by our spectral algorithm to produce a sparse system. Additionally, I have generalized the
domain distribution algorithms traditionally used in large-scale spectral codes to handle
problems in arbitrary dimensions and with arbitrary process meshes, as described in §2.3.

Together, these features make Dedalus an easy-to-use but highly efficient code for
simulating large-scale PDEs with smooth solutions in simple geometries. Dedalus is open-
source and has been applied to a wide range of problems in astrophysical, geophysical, and
biological fluid dynamics.

0.2 Glacial Meltwater Plumes

The second part describes my use of Dedalus to study the turbulent boundary layers that
form at the interface between marine-terminating glaciers and the ocean. As global sea and
air temperatures rise, glaciers in Greenland and Antarctica are expected to begin melting
at a faster rate, resulting in a net mass-loss of ice in these regions and raising global sea
levels. A large uncertainty in the projected melt rates in Greenland, which have grown
exponentially in recent decades, is how warming waters will influence melting in the fjords
where Greenland’s glaciers meet the sea. This problem is complex because meltwater is
buoyant relative to the ambient fjord water and forms a highly turbulent plume as it rises
along the submerged face of each glacier. The resulting turbulent heat transport across this
plume determines the continued melt rate of the glacier. §3 provides an introduction to
meltwater plumes and the equations governing ice-water interfaces.

I have used Dedalus to perform a series of simulations of a simplified analog problem
of a heated interface in a stratified incompressible fluid, as described in §4. This simplified
problem retains the essential characteristics of a laterally-driven buoyant plume, but reduces
the complexity associated with solving the full equations for a melting interface. Our
simulations allow us to fit a power-law trend between the thermal forcing and the resulting
turbulent heat transfer at the wall (§4.4). Therefore, although we are unable to simulate a full
glacier, we can extrapolate these results to the geophysical regime and predict the melting
rate from this process, as well as its sensitivity to increasing ocean temperatures. This is a
highly simplified model that neglects many important processes in actual glacial fjords, but
helps build our understanding of the fluid dynamics near ice-ocean interfaces.

0.3 Nonlinear Tidal Instabilities

The third part describes my use of Dedalus to study the stability of tidal deformations
experienced by binary neutron stars as they inspiral. When the separation in binary systems

8

decreases, the tidal deformation of the bodies in the binary increases. The amount of
dissipation caused by the tide is poorly understood but is important in determining the
evolution of binary stars and planetary orbits. Furthermore, it is theorized that instabilities
in the tidal deformation of binary neutron stars may alter the gravitational waveforms emitted
by such systems, potentially allowing detectors such as LIGO to observationally constrain
the unknown interior structure of these objects. An introduction to astrophysical tides and
tidal instabilities is provided in §5.

I have used Dedalus to develop a comprehensive workflow for studying the nonlinear
stability of a plane-parallel atmosphere experiencing tidal deformations, which is detailed
in §6. Using Dedalus, we solve for the background structure of the atmosphere, determine
the eigenmodes of the atmosphere, and evaluate the predicted threshold amplitude for tidal
instabilities using weakly nonlinear theory. We have additionally performed fully nonlinear
simulations which agree with the predicted threshold. Although we have not yet examined
realistic neutron star models, this work demonstrates the feasibility of using fully nonlinear
calculations to test tidal stability predictions from perturbative theories. In the future,
these simulations may help estimate the nonlinear tidal dissipation expected in neutron star
binaries and the feasibility of observing this process with gravitational wave detectors.

9

10

Part I

The Dedalus Project

11

Chapter 1

Introduction to Spectral Methods

1.1 Spectral representations of functions

1.1.1 Spectral convergence and truncation errors

A spectral method is a technique for discretizing functions by expanding them over a set of
basis functions. These methods find broad application in numerical analysis as they lead to
highly accurate and efficient algorithms for manipulating functions and solving differential
equations. Boyd (2001) is a classic reference on these methods, and covers the material in
this section in great detail.

Consider a complete set of basis functions {φn(x)} that are orthogonal under some
inner product 〈φn |φm〉 ∝ δn,m. The spectral representation of a function f (x) with respect
to this basis is given by the set of coefficients { f φn } appearing in the expansion of f (x) as

f (x) =
∞∑
n=0

f φn φn(x) (1.1)

f φn =
〈φn | f 〉
〈φn |φn〉

(1.2)

In general, such a representation will require an infinite number of nonzero coefficients to be
exact. Numerical spectral methods seek to find an approximate representation of a function,
often the solution to a differential equation, using a truncated expansion with N modes

f̃ (x) =
N−1∑
n=0

f̃ φn φn(x) (1.3)

The error of this approximation consists of the discretization error from the difference
between the approximate coefficients f̃ φn and exact coefficients f φn for n = 0, ..., N − 1, and
the truncation error due to neglecting the terms with n ≥ N .

In practice, the discretization error is often assumed to be of the same order as the

13

truncation error, which can be estimated using the convergence properties of the spectral
representation of f (x). For basis functions satisfying |φn(x)| ≤ 1, the truncation error
satisfies

ET (N) =

����� ∞∑
n=N

f φn φn(x)

����� (1.4)

≤

∞∑
n=N

| f φn | (1.5)

This error can be estimated in several cases:

• If the coefficients behave like f φn ∼ O(n−k) for large n, then the series is said to
converge algebraically with an algebraic index of convergence equal to k. In this
case, we have ET (N) ∼ O((N − 1)k−1) ∼ O((N − 1)| f φ

n−1 |), or roughly N times the
amplitude of the last retained coefficient.

• If the coefficients behave like f φn ∼ O(exp(−cnr)) for large n, then the series is said
to converge exponentially with an exponential index of convergence equal to r . If
µ = lim sup(− log | f φn |/n) is zero, the series is said to converge sub-geometrically.
If µ is infinite, the series is said to converge super-geometrically. If µ is constant,
the series the said to converge geometrically with an asymptotic rate of geometric
convergence equal to µ, and ET (N) ∼ O(exp(−µ(N + 1))) ∼ O(| f φ

n−1 |).

In both cases, we see that the amplitude of the last remaining coefficient can be used to
estimate the error in our approximation if we know how the function of interest converges
with respect to the given basis set.

1.1.2 Fourier series

The Fourier series is a powerful basis that is widely used in analytical and numerical spectral
methods due to the rapid convergence of the Fourier representation of smooth functions on
periodic intervals. The standard Fourier basis functions are simply complex exponential
functions einx where n is an integer, which are orthonormal under the inner product

〈eimx |einx〉 =
1

2π

∫ 2π

0
e−imxeinxdx = δm,n (1.6)

The standard Fourier expansion of a function that is periodic on the interval [0, 2π] takes
the form

f (x) =
∞∑

n=−∞

fneinx (1.7)

14

and when truncated to a finite number of modes the truncation is done symmetrically around
n = 0.

It can be shown that if the first k derivatives of f (x) are continuous, then the Fourier
expansion of f (x) converges algebraically with an algebraic index of convergence of at least
k +2. If f (x) is smooth (infinitely differentiable) on the real line, then the Fourier expansion
converges exponentially. If f (x) has singularities away from the real line in the complex
plane, the convergence will be geometric with an asymptotic rate equal to the shortest
distance from the real line to one of the singularities. If f (x) is an entire function, then the
Fourier expansion of f (x) converges super-geometrically. These properties make Fourier
series ideally suited for representing functions that are smooth or highly differentiable on a
periodic interval. Similar results hold for the representation of functions with even or odd
parity around the endpoints of an interval using cosine or sine series, respectively.

For a finite Fourier expansion, the Fast Fourier Transform (FFT) allows for the con-
version between the Fourier coefficients of a function and the values of the function on the
uniformly-spaced grid xi = 2πi/N, (i = 0, .., N − 1) in O(N log N) time. This capability
enables computations requiring both sets of values to be performed efficiently for large N .

1.1.3 Chebyshev series

Chebyshev polynomials are a family of classical orthogonal polynomials on the interval
[−1, 1]. They are related to cosine functions under a simple change of variables as

Tn(x) = cos(n cos−1(x)) (1.8)

and are orthogonal under the weighted inner product

〈Tm |Tn〉 =

∫ 1

−1

Tm(x)Tn(x)
√

1 − x2
dx =

π

2 − δm,0
δm,n (1.9)

The coordinate transform used to define the polynomials provides the geometric interpre-
tation of the Tn(x) being the projection onto the plane of the function cos(nx) drawn on a
cylinder bisected by the plane, as shown in Fig. 1.1.

The convergence properties of Chebyshev series follow closely from those of Fourier
series due to their connection via a simple coordinate transform. In particular, if f (x)

is smooth on the interval [−1, 1], then the Chebyshev expansion of f (x) will converge
exponentially. If f (x) has singularities away from this real interval in the complex plane,
the convergence will be geometric with an asymptotic rate equal to the smallest quasi-radius
of the singularities in elliptic coordinates. If f (x) is entire, then the Chebyshev expansion
converges super-geometrically. These properties make Chebyshev series ideally suited for

15

Figure 1.1: The Chebyshev polynomials can be viewed as projections onto the plane of
cosine modes drawn on a cylinder. Figure adapted from Burns (2013).

representing functions that are smooth or highly differentiable but non-periodic on finite
intervals.

The relation to the cosine series can also be used to convert between the truncated
Chebyshev coefficients of a function and its values on specific grids using fast discrete co-
sine transforms (DCTs). In particular, DCTs can be used to transform forward and backwards
from the nodes of Gaussian quadrature for Chebyshev polynomials to the Chebyshev expan-
sion coefficients. These nodes, also known as the “roots” grid for Chebyshev polynomials,
consist of the points

xi = − cos
(
π(i + 1/2)

N

)
i = 0, ..., N − 1 (1.10)

DCTs can also be used to transform the expansion coefficients to the values on the “extrema”
grid for Chebyshev polynomials, which contains the endpoints of the interval, given by

xi = − cos
(

πi
N − 1

)
i = 0, ..., N − 1 (1.11)

The availability of a fast transform often makes Chebyshev polynomials series preferable to
other polynomial series for representing functions on finite intervals.

1.2 Solving differential equations with spectral methods

Spectralmethods are used to solve differential equations by expanding the unknown solutions
in a truncated spectral series and solving the resulting algebraic equations for the expansion
coefficients. There are a number of approaches for constructing and solving these equations,
each with different advantages and disadvantages. In discussing the various options, we will

16

consider first-order linear differential equations of the form

L(u)(x) = f (x) (1.12)

with a general Dirichlet boundary condition

au(−1) + bu(1) = c (1.13)

where L is a first-order differential operator, f (x) and {a, b, c} are specified, and u(x)

is the desired solution. Higher-order equations and/or equations with different boundary
conditions (e.g. Neumann conditions) can generally be handled with similar methods, or
expressed as systems of first-order equations of the desired form. The truncated version of
the equation with N modes, supposing we can compute the exact truncation f̃ (x) of f (x),
reads

L(ũ)(x) = f̃ (x) (1.14)

aũ(−1) + bũ(1) = c (1.15)

1.2.1 Collocation method

Perhaps the most common formulation of Chebyshev spectral methods is the collocation
approach, where the differential equation is enforced on the Chebyshev extrema points. For
any set of N separate points {xi}, the Cardinal polynomials {Ci} for those points are the N

unique polynomials of degree (N − 1) satisfying Ci(xj) = δi, j . Any polynomial of degree
up to (N − 1) can be uniquely expanded in the cardinal polynomials using its values at the
grid points as

ũ(x) =
N−1∑
j=0

ũ(xj)Cj(x) (1.16)

Standard collocation methods substitute this expansion and enforce the differential
equations at each point in the extrema grid, except for at one of the boundary points where
the boundary condition is instead enforced (without loss of generality, we will assume b , 0
and apply the boundary condition at xN−1 = 1). This scheme can be written as a matrix
problem for the values of ũ on the extrema grid as

N−1∑
j=0

L(Cj)(xi)ũ(xj) = f̃ (xi) (i = 0, ..., N − 2) (1.17)

aũ(x0) + bũ(xN−1) = c (1.18)

The collocation method has been successfully applied to an extremely broad range of

17

applications. Its primary advantage is that the boundary conditions are easily enforced by
replacing the endpoint rows of the discretized equation matrix, and the solution can be found
directly in grid space. Its primary disadvantage is that the method generally results in fully
dense matrices, and more complicated boundary conditions require more care to implement
(Driscoll et al., 2015).

1.2.2 Galerkin method

If the equation can be rewritten with a homogeneous boundary condition (c = 0) and a basis
set can be constructed which automatically satisfies the boundary conditions (aφi(−1) +
bφi(1) = 0), then the full solution can be found by expanding the differential equation in
this basis and enforcing the resulting constraints mode-by-mode. This method is referred to
as the Galerkin method, and can be written explicitly as

N−1∑
j=0
〈φi |Lφ j〉ũ

φ
j = 〈φi | f̃ 〉 (i = 0, ..., N − 1) (1.19)

This method is commonly used with Fourier series, which automatically satisfy peri-
odic boundary conditions. Furthermore, since the derivative of a complex exponential is
proportional to itself, the derivative matrices produced by this method for Fourier series are
banded:

〈einx |∂xeimx〉 = imδn,m (1.20)

The Galerkin matrices for Fourier problems with constant coefficients are therefore typically
diagonal, allowing them to be solved trivially.

Galerkin bases andmethods can be constructed fromChebyshev polynomials for simple
boundary conditions, and provide a particularly powerful analytical tool for such problems.
However, such bases can be difficult to construct for complex boundary conditions, and
require functions to be converted between bases before fast Chebyshev transforms can be
used.

1.2.3 Tau method

The tau method is a modified form of the Galerkin method which enforces the spectral
expansion of the equations mode-by-mode for N − 1 modes, followed by the boundary
condition. The classical tau method expands the equations in the same basis that is used for
the solution, giving

N−1∑
j=0
〈φi |Lφ j〉ũ

φ
j = 〈φi | f̃ 〉 (i = 0, ..., N − 2) (1.21)

18

N−1∑
j=0
(aφ j(−1) + bφ j(1))ũ

φ
j = c (1.22)

The method is referred to as the tau method because the above equations are equivalent
to solving the perturbed equation

Lũ + τφN−1(x) = f̃ (1.23)

aũ(−1) + bũ(1) = c (1.24)

where τ is unknown, to full order over all N modes. The removal of a row from the
Galerkin matrix for the differential equation is equivalent to adding a degree of freedom
to the equation, a “tau term”, which appears as a coefficient in front of a polynomial
corresponding to the removed rows. The taumethod provides a conceptually straightforward
way of enforcing general boundary conditions without requiring a change to a specialized
basis.

1.3 Generating sparse spectral methods

1.3.1 Generalizing the tau method

The fundamental principle of the tau method is to close problems over finite truncations in
polynomials by adding a tau term to the differential equation. In general, the tau polynomial
does not need to be one of the basis functions used to represent the solution. Instead, we
can write a general tau-modified system as

Lũ + τP(x) = f̃ (1.25)

aũ(x)(−1) + bũ(1) = c (1.26)

where P is a polynomial of degree N − 1. At this point, the problem is generally closed and
a unique solution {ũ, τ} exists. The discretized solution can then be found by expanding
it in terms of any polynomial basis of trial functions {φi}, projecting the equations against
any polynomial basis of test functions {ψi}, and solving the resulting discretized system

N−1∑
j=0
〈ψi |Lφ j〉ũ

φ
j + τ〈ψi |P〉 = 〈ψi | f̃ 〉 (i = 0, ..., N − 1) (1.27)

N−1∑
j=0
(aφ j(−1) + bφ j(1))ũ

φ
j = c (1.28)

19

This formulation provides a unified framework for examining different solution strategies.
For instance, the classical Chebyshev-tau method is recovered by picking ψi = φi = Ti and
P = TN−1.

1.3.2 Creating a sparse tau method

The drawback of the formulations discussed so far is that the discretized matrices for
the Chebyshev derivative operator are dense. In particular, the derivatives of Chebyshev
polynomials satisfy the recurrence relation

∂xTn

n
= 2Tn−1 +

∂xTn−2

n − 2
(1.29)

resulting in a dense upper triangular matrix when the derivatives of Chebyshev polynomials
are projected back against themselves:

〈Ti |∂xTj〉 =
2 j((j − i)mod 2)

1 + δi,0
[i < j] (1.30)

The structure of this matrix is shown on the left in Fig. 1.2. However, the derivatives of
Chebyshev polynomials can be written sparsely in terms of the Chebyshev polynomials of
the second kind, Un(x), as

∂xTn(x) = nUn−1(x) (1.31)

The Chebyshev-U polynomials are defined trigonometrically as

Un(x) =
sin((n + 1) cos−1(x))

sin(cos−1(x))
(1.32)

and are an orthogonal family of polynomials under the weight w(x) =
√

1 − x2.
If the Chebyshev-U polynomials are used as test functions, and the projection is done

using the Chebyshev-U inner product, then the derivative matrix becomes banded, as shown
on the right in Fig. 1.2:

〈Ui |∂xTj〉 = jδi, j−1 (1.33)

Additionally, non-differential terms can be sparsely converted to Chebyshev-U polynomials
via the relation 2Tn(x) = Un(x) −Un−2(x), resulting in the banded conversion matrix

〈Ui |Tj〉 =
1
2
(δi, j + δi, j−2) (1.34)

Together, thesematrices can be used to render a first-order differential equationwith constant
coefficients sparse. Higher-order equations can be handled by applying equivalent relations

20

Figure 1.2: Derivative matrices using Chebyshev-T and Chebyshev-U polynomials as test
functions. Using different families of test and trial functions allows general differential
operators to be represented with sparse matrices.

for higher derivatives of the Chebyshev polynomials (known as the ultraspherical method
(Olver et al., 2013)) or simply by reducing the equation to a first-order system.

1.3.3 Building a fully banded tau method

If the tau polynomial is chosen to be TN1 or UN−1, the tau column in the sparse tau method
will only contain a few non-zero entries near i ≈ N , and the equation matrix will be banded.
If P = UN−1, the tau column and the last row of the equation matrix can be dropped, and
the coefficients of ũ can be solved without finding τ. For simple boundary conditions, a
right-preconditioner can then be applied to render the boundary conditions sparse and the
system fully banded. For Dirichlet boundary conditions, one such preconditioner is given by
changing the trial basis from the Chebyshev-T polynomials to the Chebyshev-D or Dirichlet
polynomials, defined by

Dn(x) =

T0(x) n = 0

T1(x) n = 1

Tn(x) − Tn−2(x) n ≥ 2

(1.35)

The D-to-T conversion matrix is then banded, with

〈Ti |Dj〉 = δi, j − δi, j−2 (1.36)

21

The Dirichlet polynomials are chosen in this manner to satisfy

Dn(±1) =

1 n = 0

±1 n = 1

0 n ≥ 2

(1.37)

so that Dirichlet boundary conditions only involve the first two coefficients under this
discretization:

a(uD
0 − uD

1) + b(uD
0 + uD

1) = c (1.38)

Together, we have that for constant-coefficent first-order equations with Dirichlet
boundary conditions, choosing φn = Dn, ψn = Un, and P = UN−1 renders the result-
ing spectral discretization fully banded. This allows the system to be efficiently solved using
sparse/banded matrix solution algorithms. Higher-order equations and different boundary
conditions can generally be reduced to systems satisfying the necessary form. Equations
with non-constant but slowly varying coefficients, as are often encountered in computa-
tional physics, can be accommodated by using band-limited expansions of the non-constant
coefficients to maintain the overall bandedness and sparsity of the matrices (Olver et al.,
2013). This formulation forms the basis of the spectral method implemented by Dedalus,
as it allows broad classes of equations to be converted to a computationally efficient and
spectrally accurate form.

22

Chapter 2

Design and Implementation of Dedalus

2.1 Introduction

2.1.1 Motivation for creating Dedalus

The Dedalus Project is a flexible framework for solving partial differential equations that
has been developed by myself, Benjamin Brown, Daniel Lecoanet, Jeffrey Oishi, and Ge-
offrey Vasil. The goal of our collaboration is to build a code that accurately simulates a
wide range of equations, particularly those describing fluid flows found in geophysical and
astrophysical applications. A broad assortment of nonlinear PDEs are encountered when
studying flows in environments such as planetary atmospheres, oceans, and stellar interiors.
These include various hydrodynamical equation sets involving a diverse range of physical
processes, including magnetic effects, chemical reactions, phase changes, radiative trans-
port, active biological processes, and many more. Additionally, the governing equations are
often filtered to produce reduced models which remove some dynamical processes, such as
fast waves or boundary layers, while retaining the essential features and dynamics of the
flow at the scales of interest.

Numerical studies of astrophysical and geophysical fluid processes are often performed
using local or global domains with simple geometries, including spheres, cylinders, and
closed or periodic boxes. Additionally, low-dimensional models are frequently utilized to
study basic processes over a wider range of parameters than may be feasible with large
3D simulations. Global spectral methods offer a robust and highly efficient approach for
solving smooth PDEs in these types of geometries. These methods represent unknown
variables by expanding them over a set of global basis functions, rather than discretizing
them at points on a numerical grid. For smooth solutions, such as those typically found in
low-Mach-number flows, these representations typically provide exponentially increasing
accuracy as more basis functions are added, resulting in rapidly converging and extremely
accurate numerical solutions.

Indeed, spectral methods have been widely used to simulate astrophysical and geo-

23

physical fluid flows in the past. However, even though these methods are widely applicable,
previous spectral solvers have frequently been written with only a narrow range of physical
models and geometric domains in mind. Additionally, different formulations of the spec-
tral discretization of a PDE can lead to large differences in the efficiency with which the
discretized system can be solved. In particular, recent literature has focused on developing
sparse representations of differential operators acting on common spectral bases, which are
substantially better conditioned and faster than traditional dense collocation techniques, but
these techniques have primarily been applied to 1D problems and small-scale simulations.

In developing Dedalus, we have aimed to build a framework utilizing modern sparse
spectral techniques that both flexibly handles different equations and domains and is capable
of performing large-scale, highly parallelized simulations. While our development has been
motivated by the study of turbulent flows in astrophysics and geophysics, Dedalus is capable
of solving a much broader range of PDEs.

2.1.2 A brief history of Dedalus development

Noting the absence of an easy-to-use, high-order code for simulating astrophysical flows,
Jeffrey Oishi began developing the first version of Dedalus in 2010. I joined the project in
the summer of 2011 as a student in the DOE SULI program. This first version of the code
implemented Boussinesq magnetohydrodynamics in a 3D shearing box geometry using
Fourier spectral methods in Python. The project demonstrated the feasibility of using a
high-level language to write a simple yet high-performance, parallelized spectral solver for
fluid simulations.

The following year, Benjamin Brown, Daniel Lecoanet, and Geoffrey Vasil joined
the development team. Together we developed the concept for a new version of Dedalus
implementing a matrix-based system for handling general equations using Fourier and
Chebyshev spectral methods. As I began my PhD, we began implementing this concept
in the second version of the Dedalus codebase. Over the next year, we developed and
implemented the equation parsing and automatic parallelization schemes that form the
foundation of the current framework. In the following years, we added a range of solvers
and features to the codebase, and implemented a variety of performance enhancements.
This dissertation focuses on this version of the code.

In the past several years, we have focused on the development of novel spectral bases
for geometries with coordinate singularities, particularly disks (G. M. Vasil et al., 2016) and
spheres (Daniel Lecoanet et al., 2018; G. Vasil et al., 2018). We are currently implementing
these bases and a number of other enhancements in a new version of the Dedalus codebase
which will not be discussed in detail here.

24

2.1.3 Codebase and dependencies

The Dedalus codebase is primarily written in Python 3. We chose to develop the code in
Python because it is an open-source, high-level language with a vast ecosystem of libraries
for numerical analysis, system interaction, input/output, and data visualization. While
numerical algorithms written directly in Python may suffer from poor performance, it is
quite easy to wrap optimized C libraries into Python. This allows the language to be used
to combine optimized libraries for a variety of performance-critical routines together in a
single codebase with a high-level interface. The primary dependencies of Dedalus include:

• The Numpy, Scipy, and Cython packages for Python (Behnel et al., 2011; Jones et al.,
2001).

• The FFTW C-library for performing fast Fourier transforms (Frigo et al., 2005).

• An implementation of the MPI communication interface, and the Python wrapper
mpi4py (Dalcin et al., 2008).

• The HDF5 C-library for writing and reading HDF5 files, and the Python wrapper
h5py (Collette, 2013; The HDF Group, 1997).

The wide range of standard-library Python packages are used to build e.g. logging and
configuration interfaces following standard practices.

Additionally, and perhaps counter-intuitively, we have found that creating algorithms
to accommodate a broad range of equations and domains has resulted in a compact and
maintainable codebase. Currently, the Dedalus package consists of roughly 10,000 lines of
Python. By producing sufficiently generalized algorithms, it is possible to compactly and
robustly provide a great deal of functionality.

2.1.4 Documentation and community

Dedalus has been fully open-source since its creation, and is currently publicly hosted on
Bitbucket1. Documentation is maintained online2 and includes a series of tutorials and
example problems demonstrating the code’s capabilities and walking new users through the
basics of constructing and running a simulation.

The core collaborators additionally maintain mailing lists for the growing Dedalus
user and developer communities. The Dedalus user list currently has over 100 members,
while the development list has 20 members. Dedalus has been utilized in publications3 in
a wide range of fields, including applied math, astrophysics, atmospheric science, biology,
experimental fluid dynamics, planetary science, and plasma physics.

1https://bitbucket.org/dedalus-project/dedalus/src/default/
2http://dedalus-project.readthedocs.io/en/latest/
3http://dedalus-project.org/citations/

25

https://bitbucket.org/dedalus-project/dedalus/src/default/
http://dedalus-project.readthedocs.io/en/latest/
http://dedalus-project.org/citations/
https://bitbucket.org/dedalus-project/dedalus/src/default/
http://dedalus-project.readthedocs.io/en/latest/
http://dedalus-project.org/citations/

2.1.5 Comparison to other codes

A wide range of open-source codes have been developed to simulate astrophysical and
geophysical flows. Several publicly available codes for astrophysical flows are Athena4,
Flash5, Enzo6, Pencil7, and Gizmo8. Several publicly available codes for geophysical flows
are MITGCM9, Fluidity10, and MOM11. More general tools for simulating incompressible
and low Mach-number flows in complex geometries include the spectral element codes
NEK500012 and Nektar++13. These codes are generally tuned to achieve high levels of
performance and parallelism, enabling large-scale simulations of turbulent flows. However,
they typically implement specific equations, such as fully compressible Navier-Stokes with
a specific equation of state, and can be very difficult to modify if you are interested in a
reduced model or physics that has not already been implemented.

A number of flexible PDE solvers are also currently available which can accommodate a
wider range of physical models. One of the most popular is FEniCS14, a finite-element code
that allows users to symbolically enter their equations in variational form. FEniCS can solve
many PDEs in a wide range of geometries, however for simple geometries its finite element
discretization is less efficient than a global spectral method. One of the most versatile codes
utilizing spectral methods is Chebfun15, a MATLAB package for manipulating functions
and solving differential equations using Chebyshev collocation methods. ApproxFun16 is
a similar Julia package for manipulating functions using sparse Chebyshev methods. Both
of these packages provide functionality well beyond solving differential equations, but are
generally focused on solving low-dimensional problems on shared-memory systems, rather
than solving large-scale PDEs in parallel.

Dedalus aims to bridge this gap by providing a high-performance, flexible solver based
on sparse spectral methods. Compared to traditional AFD/GFD codes, it provides a simple
way of simulating a broader range of equations and achieving highly accurate solutions. The
primary drawback of the code is its restriction to simple geometries that can be represented
by the direct product of spectral bases. Finite element and spectral element solvers are

4https://github.com/PrincetonUniversity/Athena-Cversion
5http://flash.uchicago.edu/site/flashcode/
6http://enzo-project.org
7http://pencil-code.nordita.org
8http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
9http://mitgcm.org
10http://fluidityproject.github.io
11https://www.gfdl.noaa.gov/ocean-model/
12https://nek5000.mcs.anl.gov
13https://www.nektar.info
14https://fenicsproject.org
15http://www.chebfun.org
16https://github.com/JuliaApproximation/ApproxFun.jl

26

https://github.com/PrincetonUniversity/Athena-Cversion
http://flash.uchicago.edu/site/flashcode/
http://enzo-project.org
http://pencil-code.nordita.org
http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
http://mitgcm.org
http://fluidityproject.github.io
https://www.gfdl.noaa.gov/ocean-model/
https://nek5000.mcs.anl.gov
https://www.nektar.info
https://fenicsproject.org
http://www.chebfun.org
https://github.com/JuliaApproximation/ApproxFun.jl
https://github.com/PrincetonUniversity/Athena-Cversion
http://flash.uchicago.edu/site/flashcode/
http://enzo-project.org
http://pencil-code.nordita.org
http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
http://mitgcm.org
http://fluidityproject.github.io
https://www.gfdl.noaa.gov/ocean-model/
https://nek5000.mcs.anl.gov
https://www.nektar.info
https://fenicsproject.org
http://www.chebfun.org
https://github.com/JuliaApproximation/ApproxFun.jl

well-suited to complex geometries, but in the simple domains that are often considered
in astrophysics and geophysics, the global elements utilized by Dedalus are more accurate
and efficient. In comparison to other flexible spectral codes, Dedalus focuses on solving
large-scale PDEs in parallel environments.

Many of the building blocks of the spectral algorithms in Dedalus have been utilized by
a number of authors for decades. The contribution of our work to the spectral community is
assembling a range of techniques to produce a framework for efficiently solving a broad range
of PDEs in parallel. In particular, §2.7 describes how we formulate sparse spectral matrices
from symbolically entered systems of equations. By requiring problems to be first-order
in temporal and Chebyshev derivatives, we are able to simply and consistently produce
banded matrices for wide ranges of equation sets. This combines the well-established
techniques of Chebyshev T-to-U conversion and Dirichlet preconditioning (Boyd, 2001)
with the more recent technique of band-limited coefficient expansions (Olver et al., 2013) to
simply accommodate equations with non-constant coefficients, high-order derivatives, and a
variety of boundary conditions. Additionally, §2.3 describes our domain distribution system,
which generalizes the slab and pencil distributions traditionally used in parallel spectral codes
to arbitrary dimensions and process meshes. Along with our simple parsing interface, these
algorithms for producing banded systems and performing large-scale distributed solves for
arbitrary PDEs make Dedalus a novel addition to the spectral methods community.

2.2 Spectral bases

Dedalus represents multidimensional fields using the direct product of one-dimensional
spectral bases, and implementations of each type of basis form the lowest level of the
program’s class hierarchy. The primary responsibilities of each basis class are to define
the collocation points of that basis and to provide an interface for performing spectral
transforms between the spectral coefficients of a function and the values of the function on
the collocation points.

An instance of a basis class represents a series of its respective type truncated to a
given number of modes Nc, and affinely transformed to a specified interval on the real
line [xL, xR] ⊂ R, and is instantiated with these arguments. Each basis class is defined
with respect to a native interval on the real line [XL, XR] ⊂ R, and contains a method for
producing a collocation grid of Ng points on this interval, called a native grid of scale
s = Ng/Nc. Conversions between the native coordinates X and problem coordinates x are
done via an affine transformation:

X − XL

XR − XL
=

x − xL
xR − xL

(2.1)

27

which is simply applied to a native grid to produce a basis grid.
Each basis class defines methods for forward transforming (moving from grid values

to spectral coefficients) and backward transforming (vice versa) data arrays along a single
axis. Along the transform dimension, the size of the coefficient data must be Nc and the size
of the grid data must match the specified transform scale s. When s < 1, the coefficients
are truncated after the first Ng modes before the transform is applied. Such transforms are
useful for viewing compressed (i.e. filtered) versions of a field in grid space. When s > 1,
the coefficients are padded with Ng−Nc zeros above the highest modes before the transform
is applied. Such transforms are useful for calculating nonlinear terms, such as products of
multiple fields, in grid space without aliasing errors. They are also useful for performing
spectral interpolation, i.e. to view low resolution data on a fine grid.

Using objects to represent bases is particularly useful because it allows the transform
methods to easily cache plans or matrices that may be costly to precompute. The basis
classes also present a unified interface for implementing identical transforms using multiple
libraries with potentially different performance and build requirements on different systems
and problems. We will now define the basis functions, grids, and transform methods for the
currently implemented spectral bases.

2.2.1 Fourier basis

For periodic dimensions, we implement a Fourier basis consisting of complex exponential
modes on the native interval [0, 2π]:

φFk (x) = exp(ik x) (2.2)

and a grid consisting of evenly-spaced points beginning at the left side of the interval:

xFi =
2πi
Ng

i = 0, ..., Ng − 1. (2.3)

A function is represented as a symmetric sum over positive and negative wavenumbers

f (x) =
km∑
−km

fkφFk (x) (2.4)

where km = b(Nc − 1)/2c is the maximum resolved wavenumber, excluding the Nyquist
mode kN = Nc/2when Nc is even. When f is a real function, only the (complex) coefficients
corresponding to k >= 0 modes are stored, since they have a conjugate symmetry with the
coefficients of the k < 0 modes. We generally discard the Nyquist mode since this mode
is only marginally resolved by the grid: for real functions, for instance, cos(kN x) can be

28

captured by the Nyquist mode, but sin(kN x) cannot, since the grid points fall on the zeroes
of this function.

The expansion coefficients are given explicitly by

fk =
1

2π

∫ 2π

0
f (x)φF∗k (x)dx (2.5)

=
1

Ng

Ng−1∑
i=0

f (xFi)φ
F∗
k (x

F
i) (2.6)

but can be computed in O(Ng log Ng) using the fast Fourier transform (FFT). We implement
FFTs from both the Scipy library and the FFTW library, and rescale the results to match
the above normalizations, i.e. having the coefficients directly represent mode amplitudes.
The coefficients are stored in the traditional FFT output format, starting from k = 0 and
increasing to km, then beginning with −km and increasing to −1.

2.2.2 Sine/Cosine basis

For periodic dimensions possessing definite symmetry, we implement a sine/cosine basis
consisting of either sine waves or cosine waves on the native interval [0, π]:

φck(x) = cos(k x) (2.7)

φsk(x) = sin(k x) (2.8)

and a grid consisting of evenly-spaced interior points:

xp
i =

π(i + 1/2)
Ng

i = 0, ..., Ng − 1. (2.9)

Functions that have even parity with respect to the interval endpoints are represented
with a cosine series as

f (x) =
Nc−1∑
k=0

fkφck(x) (2.10)

while functions that have odd parity with respect to the interval endpoints are represented
with a sine series as

g(x) =
Nc−1∑
k=1

gkφ
s
k(x). (2.11)

The Nyquist mode kN = Nc is dropped from each sine series, since the corresponding mode
is unresolvable by an equivalent-size cosine series.

29

The expansion coefficients are given explicitly by

fk =
2 − δk,0

π

∫ π

0
f (x)φck(x)dx (2.12)

=
2 − δk,0

Ng

Ng−1∑
i=0

f (xp
i)φ

c
k(x

p
i) (2.13)

gk =
2
π

∫ π

0
g(x)φsk(x)dx (2.14)

=
2

Ng

Ng−1∑
i=0

g(xp
i)φ

s
k(x

p
i) (2.15)

but can be computed in O(Ng log Ng) using the fast discrete cosine transform (DCT) and
discrete sine transform (DST). The offset grid is chosen so that the same grid points can
be used to represent cosine and sine series, requiring the use of type-II DCT/DSTs for the
forward transforms, and type-III DCT/DSTs for the backward transforms. We implement
FFTs from both the Scipy library and the FFTW library, and rescale the results to match the
above normalizations, i.e. having the coefficients directly represent mode amplitudes.

These transforms are defined to act on real arrays, but since they preserve the data-
type of their inputs, they can be applied simultaneously to the real and imaginary parts of a
complex array. This is achieved by viewing a complex array as a real array with an additional
dimension of size 2 appended to its data shape, since complex floating point numbers are
stored as pairs of real floating points numbers representing their real and imaginary parts.
The spectral coefficients for complex functions are therefore also complex, with their real
and imaginary parts representing the coefficients of the real and imaginary parts of the
function, respectively.

2.2.3 Chebyshev basis

For non-periodic dimensions, we implement a Chebyshev basis consisting of the Chebyshev-
T polynomials on the native interval [−1, 1]:

φTn (x) = cos(n cos−1(x)) (2.16)

The grid for the Chebyshev basis is given by the nodes of Gaussian quadrature for Chebyshev
polynomials, also known as the roots or internal grid:

xTi = − cos
(
π(i + 1/2)

Ng

)
i = 0, ..., Ng − 1. (2.17)

30

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Figure 2.1: The native Chebyshev grids with Ng = 32 (top) and Ng = 48 (bottom).

Near the center of the interval, the grid points approach an evenly-spaced grid

xTi (i ≈ Ng/2) ≈
π(i + 1/2)

Ng
−
π

2
(2.18)

while near the ends of the interval the grid points cluster like

xTi (i � Ng) ≈ −1 +
1
2

(
π(i + 1/2)

Ng

)2
(2.19)

xTi (Ng − i � Ng) ≈ 1 −
1
2

(
π(i + 1/2)

Ng

)2
(2.20)

allowing for very small structures near the endpoints to be resolved (Fig. 2.1).
A function is represented as a simple sum over polynomials as

f (x) =
Nc−1∑
n=0

fnφTn (x) (2.21)

The expansion coefficients are given explicitly by

fn =
2 − δn,0

π

∫ 1

−1

f (x)φTn (x)
√

1 − x2
dx (2.22)

=
2 − δn,0

π

∫ π

0
f (cos(θ))φTn (cos(θ))dθ (2.23)

=
2 − δn,0

Ng

Ng−1∑
i=0

f (xTi)φ
T
n (x

T
i) (2.24)

but can be computed in O(Ng log Ng) using the fast discrete cosine transform (DCT), since
the basis functions and grid points are identical to those for the cosine basis under the
change of variables xT = − cos(xp). The Chebyshev basis therefore uses the same Scipy
and FFTW DCT functions as the cosine basis, wrapped to handle the sign difference in the
change-of-variables and preserve the well-ordering of the Chebyshev grid points. It also

31

0 2 4 6 8 10

Figure 2.2: The combined grid of a compound basis consisting of a 16-point segment on
[0, 2], a 32-point segment on [2, 8], and a 16-point segment on [8, 10].

behaves similarly for complex functions, preserving the data type and producing complex
coefficients that represent the polynomial expansion of the real and imaginary parts of the
function.

2.2.4 Compound bases

An arbitrary number of adjacent Chebyshev segments can be connected to from a compound
Chebyshev basis. In this basis, the spectral coefficients of the Chebyshev expansion of a
function on each subinterval are simply concatenated to form the full coefficient vector, and
the regular Chebyshev transforms are applied to each subinterval. The compound basis grid
is similarly the concatenation of the subinterval Chebyshev grids. Since the interior grid is
used for the Chebyshev basis, there are no overlapping gridpoints at the interface between
adjacent segments. Continuity of the series is not imposed a priori at the interfaces.

The subintervals making up a compound basis may have different resolutions and
different lengths, but must be adjascent. Compound bases are useful for placing higher
resolution, due to the clustering of the endpoints of the Chebyshev grid, at fixed interior
positions in the domain. Compound expansions can also substantially reduce the number
of modes needed to resolve a function that is not smooth if the positions where the function
becomes non-differentiable are known. Fig. 2.2 shows the grid of a compound basis
composed of three subintervals.

2.2.5 Multidimensional transform plans

Each basis implements spectral transforms using the FFTs implemented in both the Scipy
library and the FFTWlibrary. Scipy is a Python dependency ofDedalus andmust be available
on any system running the code. FFTW is a heavily optimized C library for computing
FFTs, and allows for fine-grained control over memory usage and transform planning to
find the optimal algorithms for a given system. To minimize code reuse and maximize the
extensibility of our algorithms, we require the ability to compute one-dimensional transforms
along an arbitrary axis of a multidimensional array.

32

This functionality is included in the Scipy transforms, and we have constructed Cython
wrappers around the FFTW Guru interface to achieve the same functionality using FFTW-
based transforms. These wrappers produce plans for FFTs along one dimension of an
arbitrary dimensional array by collapsing the axes before and after the transform axis, and
creating an FFTW plan for a two-dimensional loop of rank-1 transforms. For instance, to
transform along the third axis of a five-dimensional array of shape (N1, N2, N3, N4, N5), the
array would be viewed as a three-dimensional array of shape (N1N2, N3, N4N5) and a loop
of N1N2 × N4N5 transforms of size N3 would be performed. This approach allows for the
unified planning and evaluation of transforms along any dimension of an arbitrary dimension
array, reducing the risk of coding errors that might accompany treating different dimensions
of data as separate cases.

The plans produced by FFTW are cached by the corresponding basis objects and exe-
cuted using the FFTW new-array interface for any requested transform for a corresponding
data shape. This centralized caching of transform plans reduces both precomputation time
and the memory footprint necessary to plan FFTW transforms for many data fields. The
FFTW planning rigor, which determines how much precomputation should be performed
to find the optimal transform algorithm, is also wrapped through the Dedalus configuration
interface.

2.3 Domains

Domain objects represent physical domains, discretized by the direct product of one-
dimensional spectral bases. A Dedalus simulation will typically contain a single domain
object, which functions as the overall context for fields and problems in that simulation. An
instance of the domain class is instantiated with a list of basis objects forming this direct
product, the data type of the variables on the domain (double precision real (64-bit) or
complex (128-bit) floating point numbers), and the process mesh for distributing the domain
when running Dedalus in parallel.

2.3.1 Parallel data distribution

Parallelization in Dedalus is achieved by directly subdividing and distributing the domain (or
rather, any fields defined over a domain) over the available processes in a distributed-memory
MPI environment. The domain class internally constructs a distributor object that directs
this decomposition and the communication necessary to transform fields between grid space
and coefficient space. Specifically, a domain can be distributed over any lower-dimensional
array of processes, referred to as the process mesh. The process mesh must be of lower
dimension than the domain so that at least one dimension is local at all times, allowing

33

spectral transforms to be performed locally on this dimension and requiring parallel data
transposes to be performed to change the locality.

To coordinate this process, the distributor constructs a series of layout objects describ-
ing the necessary transform and distribution states of the data between coefficient space and
grid space. Consider a domain of dimension D and shape (N1, N2, ..., ND) distributed over
a process mesh of dimension P and shape (M1, M2, ..., MP) 17:

• The first layout is full coefficient space, where the first P dimensions of the problem
are block-distributed over the corresponding dimensions of the process mesh, and the
final D−P dimensions are local. That is, the first dimension is split in adjacent blocks
of size B1,1 = ceil (N1/M1), and the process with index (m1,m2, ...,mP) in the mesh
will contain the block from m1B1,1 : (m1 + 1)B1,1 in the first dimension, etc.

• The subsequent D − P layouts will sequentially transform each axis to grid space
starting from the last axis and moving backwards.

• After D − P transforms, the first P axes will be distributed and in coefficient space,
while the final D − P axes will be local and in grid space. To proceed with the
transforms, a global data transposition is necessary to make the P-th axis local in the
next layout. This is achieved by transposing the data along the P-th axis of the mesh,
which gathers the distributed data along the P-th axis of the array while distributing
the data along the (P + 1)-th axis. This is an all-to-all communication within each
one-dimensional subset of processes in the mesh defined by fixed (m1, ...,mP−1).

• The following layout will result from transforming the P-th axis, which is now local
to grid space.

• The transposition step will then repeat to reach the next layout: all-to-all communi-
cations will be used to change the distribution over the (P − 1)-th axis of the mesh
from being over the (P − 1)-th dimension to the P-th dimension. The (P − 1)-th
dimension will be transformed to grid space, and the process will repeat until the first
axis becomes local and is transformed to grid space.

The final layout is thus in full grid space, where the first dimension is local, the next P

dimensions are distributed over the process mesh in blocks of size Bn+1,n = ceil (Nn+1/Mn),
and the final D − P − 1 dimensions are local. Moving from full coefficient space to full grid
space thus requires D local spectral transforms and P distributed array transposes.

Fig. 2.3 shows the data distribution in each layout for datawith a global shape (16, 16, 16)
distributed over a process mesh of shape (4, 2). This layout system provides a simple, well-
ordered sequence of transform/distribution states that can be systematically constructed for

17The default process mesh is a one-dimensional mesh containing all available MPI processes.

34

kx

ky

kz

Layout 0 (c)

kx

ky

z

Layout 1

kx

ky

z

Layout 2

kx

y

z

Layout 3

kx

y

z

Layout 4

x
y

z

Layout 5 (g)

Figure 2.3: The parallel data distribution for data with global shape (16, 16, 16) over a
process mesh of shape (4, 2). The global data is depicted as being split into the portions
that are local to each process. The axes are labeled e.g. kx when the corresponding axis is
in coefficient space, and e.g. x in grid space. The following sequence of transforms (TF)
and transposes (TP) is used to step between full coefficient space and full grid space: TF(z),
TP(y,z), TF(y), TP(x,y), TF(x).

35

domains and process meshes of any dimension and shape. Conceptually, the system simple
bubbles down the first local axis in order for each spectral transform to be performed locally.
Care must be taken to consider edge cases resulting in empty processes for certain domain
and process shapes. In particular, if (Mi − k)ceil

(
Nj/Mi

)
> Nj for any distributed state

where the j-th dimension of the domain is distributed over the i-th dimension of the mesh,
then the last k hyperplanes along the i-th dimension of the mesh will be empty. These cases
are typically avoidable by choosing a different process mesh shape for a fixed number of
processes.

For simplicity, we have considered the global data shape to be fixed throughout the
transform process. The implementation, however, handles arbitrary transform scales along
each axis, meaning Ni = Nc,i when the i-th axis is in coefficient space, and Ni = Ng,i = siNc,i

when the i-th axis is in grid space.

2.3.2 Transpose routines

Consider the first transpose in the process of moving from coefficient space to grid space,
i.e. transposing the distribution over the P-th mesh axis from the P-th data axis to the
(P + 1)-th data axis. This transform does not change the data distribution over the previous
process axes; instead it consists of mP separate all-to-all calls within each one-dimensional
subset of processes defined by fixed (m1, ...,mP−1). Thus each transpose is planned by
first creating a subgrid MPI communicator from the cartesian MPI communicator built
in accordance with the process mesh. This subgrid communicator consists of the mp

processes with fixed (m1, ...,mP−1). This communicator then plans for the transpose of an
array of shape (B0, ..., BP−1, NP, NP+1, NP+2, ..., ND), i.e. the subspace of the global data
spanned by the subgrid processes. This array is viewed as a four-dimensional array of shape
(B0 × ... × BP−1, NP, NP+1, NP+2 × ... × ND), constructed by collapsing the pre- and post-
transpose axes. In this way, the general case of transposing an arbitrary-dimensional array
distributed over an arbitrary-dimensional process mesh along an arbitrary axis is reduced to
the problem of transposing a four-dimensional array across its middle two axes.

In the general case of transposing the distribution along the p-th mesh axis between the
p-th and (p + 1)-th data axes, the global subgrid shape is given by (n1, ..., nd) where

ni =

Bi,i i < p

Ni i = p, p + 1

Bi,i−1 p + 1 < i ≤ P + 1

Ni i > P + 1

(2.25)

where the first p data axes are distributed over the corresponding mesh axes, the p-th and

36

(p + 1)-th data axes are alternating between being local and distributed over the p-th mesh
axis, the following P−p data axes have already undergone a transposition and are distributed
over the correspondingmesh axes less one, and the remaining data axes are local. This global
shape is collapsed to the four-dimensional reduced global subgrid shape (G1,G2,G3,G4)

where

G1 =

p−1∏
i=1

ni, G2 = np, G3 = np+1, G4 =

D∏
i=p+2

ni (2.26)

The general case is thus reduced to viewing the global subgrid data of a field as a reduced
four-dimensional array, and transposing this array between having its second and third axes
distributed over mp processes.

Routines for performing this transpose are implemented using both basic MPI all-to-all
calls, and FFTWs advanced distributed-transpose interface. The MPI version begins with
the local subgrid data of shape (G1, Bp,p, Np+1,G4) and splits this data into the blocks of
shape (G1, Bp,p, Bp+1,p,G4) to be distributed to the other processes. These blocks are then
sequentially copied into a newmemory buffer so that the data for each process is contiguous.
A MPI all-to-all call is then used to redistribute the blocks from being row-local to column-
local, in reference to the second and third axes of the reduced array. Finally, the blocks are
extracted from the MPI buffer to form the local subgrid data of shape (G1, Np, Bp+1,pG4)

in the subsequent layout. The FFTW version performs a hard (memory-reordering) local
transpose to rearrange the data into shape (G2,G3,G1,G4), and uses FFTW’s advanced
distributed-transpose interface to build a plan for transposing a matrix of shape (G2,G3) and
an itemsize of G1 × G4 ×Q, where Q is the actual data itemsize.

Fig. 2.4 shows the conceptual domain redistribution strategy for the transpose between
layouts 1 and 2 of the example shown in Fig. 2.3. Both the MPI and FFTW implementations
require reordering the local data in memory before communicating. However, they provide
simple and robust implementations encompassing the general transpositions required by the
layout structure. The MPI implementation serves as a low-dependency baseline, while the
FFTW routines leverage FFTW’s internal transpose optimization to improve performance
when a MPI-linked FFTW build is available. The FFTW planning rigor and in-place
directives for the transposes are also wrapped through the Dedalus configuration interface.

These routines can also be used to group transposes of multiple fields simultaneously.
When F fields need to be transposed, their local subgrid data is simply concatenated, and the
reduced global subgroup shape is expanded to (F×G1,G2,G3,G4), and a plan is constructed
and executed for this expanded shape. This method allows for the simultaneous transposition
of multiple fields while reducing the latency associated with initiating a transpose for each
field. The option to group multiple transpositions in this manner is controlled through the
Dedalus configuration interface.

37

kx

ky

z

Layout 1

kx

ky

z

(communicated blocks)

kx

ky

z

Layout 2

Figure 2.4: The effective data redistribution that occurs during the distributed transpose
between layouts 1 and 2 of the example shown in Fig. 2.3. This transpose is switching the
the second mesh axis with m2 = 2 from distributing the ky axis to distributing the z axis.

2.3.3 Distributed data interaction

The layout objects contain methods providing the global data shape, local data shape, block
sizes, local data coordinates, and local data slices for fields in that layout under arbitrary
transform scalings in each dimension. These methods provide the user with tools necessary
to understand the data distribution at any stage in the transformation process. This is useful
for both analyzing distributed data, and initializing distributed fields using stored global
data.

The domain class contains methods for retrieving each process’s local portion of the
N-dimensional coordinate grid and the global indices of the local spectral coefficients
assigned to each process. These local arrays are useful for initializing the values of a
field in either grid space or coefficient space. In particular, writing code that initializes all
grid or coefficient data using references to these local arrays makes it robust to changing
parallelization scenarios. That is, initial conditions can easily be written to construct the
same fields regardless of the number of processes being used, allowing for scripts to be
tested serially on local machines then executed on large systems without modification.

2.4 Fields

Field objects represent scalar-valued fields defined over a domain. They are instantiated
with an optional name and the domain object representing their spectral domain. Each field

38

object contains a metadata dictionary defining whether that field is constant along any axis,
the transform scales to be used along each axis when transforming the field, and any other
metadata associated with specific bases (such as the field parity for a the sine/cosine basis).
When the transform scales are specified or changed, the field object internally allocates a
buffer large enough to hold the local data in any layout for the given scales. Each field also
contains a reference to the current layout of the field, and a data attribute consisting of a
view of its memory buffer using the local data shape and data type of the current layout.

2.4.1 Data manipulation

The field class defines a number of methods for transforming individual fields between
layouts. The most basic are methods that move the field towards grid or coefficient space by
calling the necessary transform or transpose to increment or decrement the layout by a single
step. Other methods direct the transformation to a specific layout by taking sequential steps,
and moving to full coefficient space or full grid space, the first and last layouts, respectively.
These methods allow users to transparently interact with the distributed grid data and the
distributed coefficient data without needing to know the details of the distributing transform
mechanism and intermediate layouts.

The __getitem__ and __setitem__methods of the field class are set to allow retrieving
or setting the local field data in any layout. Additionally, shortcuts ’c’ and ’g’ allow fast
access to to the full coefficient and grid data, respectively. Completing a fully parallelized,
distributed transform is simply achieved by:

f = Field(name=’f’, domain=domain)

f[’g’] = ... # Set local grid data

f[’c’] # Returns local coefficients

The transform scales are modified using the set_scales method:

f.set_scales(10) # Set transform scales

f[’g’] # Returns 10x spectral interpolant

2.4.2 Field Systems

A set of fields can be grouped together to form a system using the FieldSystem class. The
purpose of this class is to provide an interface to efficiently access the interleaved coefficients
corresponding to the same horizontal mode, or pencil, of a group of fields. By horizontal
mode, we mean a specific product of basis functions for the first D − 1 dimensions of a
domain, indexed by a multi-index of size D − 1. Each horizontal mode has a corresponding
1D pencil of coefficients along the last axis of themultidimensional coefficient data of a field.

39

When solving PDEs that are only linearly coupled in the last dimension, the linear portion
of the PDE splits into separate matrix systems for each horizontal mode, which makes
efficiently accessing the corresponding pencils from each of the field variables desirable.

Specifically, a system of F-many fields will build an internal buffer of size

(B1, ..., BP, NP+1, ..., ND−1, ND × F) (2.27)

that is, the local coefficient shape with the last axis size multiplied by the number of fields.
The system methods gather and scatter will interleave the separate field coefficients into
this buffer, with the first coefficients of the fields along the last axis together, following
by the second coefficients, etc. Thus each system pencil of size ND × F will contain the
corresponding pencils of each of the fields, grouped by mode, in a contiguous block of
memory for efficient access.

A CoeffSystem is a similar object, which merely allocates and controls the unified
buffer rather than also instantiating field objects. These systems are used when temporary
arrays are needed for all pencils, avoiding the memory overhead associated with instantiating
new field objects.

2.5 Operators

2.5.1 Operator classes

Mathematical operations on fields, such as arithmetic, differentiation, integration, and inter-
polation, are represented by Operator classes. An instance of an operator class represents a
specific mathematical operation on a field or set of fields, and provides an interface for the
deferred evaluation of that operation.

Operators are based on an abstract base class that outlines and simplifies the imple-
mentation of individual operators. Operators may accept operands (fields or operators) from
the same domain and other parameters such as constants as arguments. Each operator class
must implement methods determining the metadata of the output based on the inputs, for
instance the parity of the output if a sine/cosine basis is used. They must also implement
a check_conditions method that checks whether or not the operation can be executed in
a given layout. For instance, spectral differentiation along some axis requires that axis to
be in coefficient space, and possibly local if the derivative couples different modes. Finally,
operators must implement an operatemethod which performs the operation using the local
data of the inputs once they have been placed in a suitable layout.

Operators can be composed to build complex expressions. An arbitrary expression is
still an instance of the root operator class, but with operands that are themselves instances

40

2

10 f

Add

Mul

f f

Mul

Add

Figure 2.5: An operator tree representing the expression 2 * (10+f) + f * f.

of operator classes, eventually with fields or other input parameters forming the leaves at
the end of the expression tree (see Fig. 2.5). Such an operator is evaluated via the evaluate
method, which is implemented by the operator base class. This method evaluates the
operator by recursively evaluating all of its operator operands, transforming them to the
proper layout, and calling the implemented operate method. Arbitrary expression trees
are therefore evaluated in a depth-first traversal of the tree. The evaluate method can
optionally cache its output if it may be called multiple times before the values of the field
leaves change. The attempt method attempts to evaluate a field, but will not initiate any
layout changes while evaluating subtrees. It therefore evaluates an expression as much as
possible given the current layouts of the involved fields. Finally, operators must implement
a number of methods allowing for algebraic manipulation of expressions, which will be
described in §2.5.5.

2.5.2 Arithmetic operators

Addition, multiplication, and exponentiation are implemented via the Add, Multiply, and
Power classes, respectively. Different subclasses of these operators are invoked depending
on the types of the operands. This multiple dispatch system is implemented as a Python
metaclass – the class of a class – which overrides the __call__ method on the class to
examine the arguments before instantiating an operator of the proper subclass.

Addition of two fields is implemented in the AddFieldField subclass and operates by
adding the local data of each field. This operation can be performed in any layout, as long
as both fields are in the same layout. Addition between fields using the sine/cosine basis
will raise an error if the fields have different parity. Addition of a field and a constant is
implemented in the AddScalarField subclass and operates by adding the constant to the

41

local data in grid space. If the constant is 0, instantiation will be skipped and the other
operand will be returned. The addition of an odd-parity series and a scalar will raise an
error, since a constant is a function of even parity.

Multiplication of two fields implemented in the MultiplyFieldField subclass, and
operates by multiplying the local data of the two fields in grid space. Multiplication of fields
using the sine/cosine basis yields a field with a parity that is the product of the input parities,
that is an even parity output for two odd or two even inputs, and an odd parity output for
an odd and an even input. Multiplication of a field and a constant is implemented in the
MultiplyScalarField subclass and operates by multiplying the field’s local data by the
constant in any layout. If the constant is 0 or 1, instantiation will be skipped and 0 or the
other operand will be returned, respectively.

The Power operator allows a field to be raised to any scalar power, and is evaluated
in grid space. A field using the sine/cosine basis can be raised to integer powers, with the
parity of the output equal to the input parity raised to the same power. If the power is 0 or
1, instantiation will be skipped and 1 or the operand will be returned, respectively.

The __add__, __mul__, and __pow__ methods of the field and operator classes are
overloaded to allow Python infix operators to be used to easily construct arithmetic expres-
sions on fields. For instance, the expression f + 5 with f a Dedalus field will produce an
AddScalarField instance. The __neg__, __sub__, and __truediv__ methods for nega-
tion, subtraction, and division are also overridden, and reduced to the other arithmetic
operations as follows:

-f # Becomes Multiply(-1, f)

f - g # Becomes Add(f, Multiply(-1, g))

f / g # Becomes Multiply(f, Power(g, -1))

2.5.3 Unary grid operators

Many common nonlinear unary functions are implemented through the UnaryGridFunction
class, which accepts as its arguments a Numpy universal function and an operand. The
supported unary functions are: np.absolute, np.sign, np.conj, np.exp, np.exp2, np
.log, np.log2, np.log10, np.sqrt, np.square, np.sin, np.cos, np.tan, np.arcsin,
np.arccos, np.arctan, np.sinh, np.cosh, np.tanh, np.arcsinh, np.arccosh, and np.

arctanh. The unary function is stored as an argument alongside the target operand, and the
operation proceeds by applying this function to the local grid space data of the operand. The
__getattr__ method of the field and operator classes are overloaded to intercept Numpy
universal function calls and instantiate the corresponding operator. This allows the direct
use of Numpy ufuncs to create operators on fields, for instance np.sin(f) on a Dedalus
field f will return UniveryGridFunction(np.sin, f).

42

2.5.4 Linear spectral operators

Linear operators acting on spectral coefficients are derived from the LinearOperator base
class, and the Coupled or Separable base classes if they do or do not couple different
spectral modes, respectively. These operators are instantiated by specifying the axis along
which the operator is to be applied, which is used to dispatch the instantiation to a subclass
implementing the operator for the corresponding basis. These operators implement a
matrix_form method which produces the matrix defining the action of the operator on
the spectral basis functions. For a basis φn and an operator A, the matrix form of A is
therefore

Ai j = 〈φi |Aφ j〉 (2.28)

where the inner product is that under which the basis functions are orthonormal. For
separable operators, this matrix is diagonal by definition, and represented with a one-
dimensional array. For coupled operators, this matrix is returned as a Scipy sparse matrix.

In general, these operators are applied by requiring that the corresponding axis of their
operand is in coefficient space. Coupled operators further require that the corresponding
axis is local. The local data of the operand is then contracted with the matrix form of
the operator along this axis to produce the local output data. Operators may override this
process by implementing a explicit_form method if a more efficient or stable algorithm
exists for forward-applying the operator.

Differentiation

The DifferentiateFourier class implements differentiation of the Fourier basis. This is
a separable operator as Fourier differentiation does not couple different modes. The Fourier
differentiation matrix DF is given by

∂x exp(ik x) = ik exp(ik x) =⇒ DF
k,k′ = ikδk,k′ (2.29)

where the k in the matrix entry expression is taken to be the signed wavenumber of the
corresponding mode.

The DifferentiateSinCos class implements differentiation of the sine/cosine ba-
sis. This is a separable operator which flips the parity of its operand. The sine/cosine
differentiation matrices DS and DC are given by

∂x sin(k x) = k cos(k x) =⇒ DS
k,k′ = kδk,k′ (2.30)

∂x cos(k x) = −k sin(k x) =⇒ DC
k,k′ = −kδk,k′ (2.31)

43

The DifferentiateChebyshev class implements differentiation of the Chebyshev ba-
sis. This is a coupled operator, as differentiation lowers the order of polynomials and
therefore must couple different Chebyshev modes. The derivatives of the Chebyshev poly-
nomials can be shown to satisfy the recurrence relation

∂xTn

n
= 2Tn−1 +

∂xTn−2

n − 2
(2.32)

which can be used to derive an explicit form for the entries of the Chebyshev differentiation
matrix DT :

DT
i, j =

2 j((j − i)mod 2)
1 + δi,0

[i < j] (2.33)

This is a dense, upper triangular matrix mapping the derivatives of Chebyshev polynomials
back to themselves. Forward-applying this matrix takes O(N2

c) time, but the result can be
computed in O(Nc) time using the following recursion for the output derivative coefficients
B given the input coefficients A:

def recursive_chebyshev_derivative(A, B):

N = A.size

B[N-1] = 0

B[N-2] = 2 * (N-1) * A[N-1]

for n in range(N-3, 0, -1):

B[n] = 2 * (n+1) * A[n+1] + B[n+2]

B[0] = A[1] + B[2] / 2

Ageneralized version of this recursion enabling it to be applied to a multidimensional field is
implemented in Cython as the explicit_form of the DifferentiateChebyshev class. We
also note that this dense matrix form of the derivative is never used when implicitly solving
a differential equation in Dedalus. As we will discuss in §2.7.1, the Chebyshev T-to-U
conversion is always applied before performing implicit solves, rendering the Chebyshev
differentiation matrices banded.

The native differentiation matrices for each basis are rescaled by the inverse of the
stretching in the affine transformation between the native and problem coordinates to produce
the problem differentiation matrices. The differentiation matrix for the compound basis is
simply the block-diagonal combination of the subbasis differentiation matrices. For each
basis in a domain, a new differentiation subclass of the corresponding type is created and
linked to the Differentiate attribute of the basis class. These methods are typically
aliased to ’d%s’ %basis.name, e.g. dx for a basis with name ’x’. Additionally, a factory
function called differentiate (aliased as d) provides an easy interface for constructing
higher-order and mixed derivatives using the basis names, by examining the bases of the
operand and composing the appropriate differentiation methods:

44

dx(f) # Becomes xbasis.Differentiate(f)

d(f, x=2, y=2) # Becomes dx(dx(dy(dy(f))))

The differentiation subclasses also examine the ’constant’metadata of their operand, and
return 0 instead of instantiating an operator if the operand is constant along the direction of
differentiation.

Integration

Integration over the native interval of a basis is a functional that returns a constant for
any input basis series, so integration operators all set the ’constant’ metadata of the
corresponding axes of their outputs to True. The operator matrices are therefore nonzero
except in the first row, which we refer to as the operator vector.

The IntegrateFourier class implements integration along a Fourier basis. It is a
separable operator, as only the constant term in the Fourier series has a non-zero integral
over the native interval. The Fourier integration vector IF is simply

IFj = 2πδj,0 (2.34)

The IntegrateSinCos class implements integration along a sine/cosine basis. While
integration of a cosine series is separable, since only the constant term has a non-zero integral
over the native interval [0, π], every other basis function in the sine series has a non-zero
integral, so the operator is generally considered as coupled. The output of integrating either
series is a constant, and hence has even parity. The sine and cosine integration vectors are
given by

ICj = πδj,0 (2.35)

ISj =
1 − (−1)j

j
=

2
j
(j mod 2) (2.36)

The IntegrateChebyshev class implements integration along a Chebyshev basis. This
is a coupled operator since all the even Chebyshev polynomials have non-zero integrals. The
Chebyshev integration vector is given by

ITj =
∫ 1

−1
Tj(x)dx =

1 + (−1)j

1 − j2 (2.37)

The native integration matrices for each basis are rescaled by the stretching of the
affine transformation between the native and problem coordinates to produce the problem
integration matrices. Integration for the compound basis simply concatenates each of the
subbasis integration vectors, and places the result in the rows corresponding to the constant

45

terms in each subbasis. For each basis in a domain, a new integration subclass of the
corresponding type is created and linked to the Integrate attribute of the basis class.
Additionally, a factory function called integrate (aliased as integ) provides an easy
interface for integrating along multiple axes, listed by name, by composing the appropriate
integration methods:

integ(f, ’x’, ’y’) # Becomes xbasis.Integrate(ybasis.Integrate(f))

If no bases are listed, the field will be integrated over all of its bases. If the operand’s
metadata indicates that it is constant along the integration axis, the product of the operand
and the problem interval length will be returned.

Interpolation

Interpolation operators are all coupled linear operators whose arguments are the operand
to be interpolated and the position in problem coordinates where the value of the operand
series should be interpolated. Interpolation operators are also all functions returning a
constant and so set the ’constant’ metadata of the corresponding axes of their outputs to
True. The operator matrices are again nonzero except in the first row, which we refer to as
the operator vector, and depend on the interpolation position. In addition to any position
within the problem interval, the strings ’left’, ’center’, and ’right’ are acceptable
inputs indicating the left endpoint, center point, and right endpoint of the problem interval.
A numerically specified position is converted to native coordinates via the basis affine
transformation, but this step is skipped for the string inputs as the corresponding positions
are simply the left, center, and right of the native interval. Skipping this conversion avoids
potential floating point errors that can occur when evaluating the affine transformation near
the endpoints.

The interpolation classes for each basis simply construct interpolation vectors consist-
ing of the pointwise evaluation of their respective basis functions at that position:

En(x) = φn(x) (2.38)

Interpolation for the compound basis takes the interpolation vector of the subbasis containing
the interpolation position and places the result in the rows corresponding to the constant
terms in each subbasis. If the interpolation position is at the interface between two subbasis,
the first subbasis is used simply to break the degeneracy. For each basis in a domain, a new
interpolation subclass of the corresponding type is created and linked to the Interpolate
attribute of the basis class. Additionally, a factory function called interpolate (aliased
as interp) provides an easy interface for interpolating along multiple axes, specified using
keyword arguments, by composing the appropriate integration methods:

46

integ(f, x=0.5, y=1)

Becomes xbasis.Interpolate(ybasis.Interpolate(f, 1), 0.5)

If the operand’s metadata indicates that it is constant along the interpolation axis, instantia-
tion will be skipped and the operand itself will be returned.

Hilbert transforms

The Hilbert transform of a function of x is the convolution of that function with (πx)−1:

H(f)(x) =
1
π

∫ ∞

−∞

f (x ′)
x − x ′

dx ′ (2.39)

where the integral is evaluated in the principal value sense. The Hilbert transform has a
particularly simple action on sinusoids, with

H(exp(ik x))(x) = −isgn(k) exp(ik x) (2.40)

H(sin(k x))(x) = −sgn(k) cos(k x) (2.41)

H(cos(k x))(x) = sgn(k) sin(k x) (2.42)

The HilbertTransformFourier and HilbertTransformSinCos classes implement
the Hilbert transform for the Fourier and sine/cosine bases. These are separable operators
implementing the above identities in their matrix forms:

HF
k,k′ = −isgn(k)δk,k′ (2.43)

HS
k,k′ = −sgn(k) (2.44)

HC
k,k′ = sgn(k) (2.45)

where k is taken to be the signed wavenumber of a mode in the Fourier case, and the parity
operator flips the parity of its input.

For each Fourier or sine/cosine basis in a domain, a new Hilbert transform subclass
of the corresponding type is created and linked to the HilbertTransform attribute of the
basis class. These methods are typically aliased to ’H%s’ %basis.name, e.g. Hx for a basis
with name ’x’. Additionally, a factory function called hilberttransform (aliased as H)
provides an easy interface for constructing higher-order and mixed Hilbert transforms using
the basis names, similar to the differentiate factory function. The Hilbert transform
subclasses also examine the ’constant’ metadata of their operand, and return 0 instead of
instantiating an operator if the operand is constant along axis to be transformed.

47

2.5.5 Manipulating expressions

The operator classes additionally implement a number ofmethods that allow for the algebraic
manipulation of operator expressions, forming a simple computer algebra system. These
methods are:

• atoms: This method recursively constructs the set of leaves of an expression matching
a specified type.

• has: This method recursively determines whether an expression contains any given
variable or operator type.

• expand: This method recursively distributes multiplication and linear operators over
sums of operands containing any specified operand or operator type. It also distributes
derivatives of products containing any specified operand or operator type using the
product rule.

• canonical_linear_form: This method first determines if all the terms in an expres-
sion are linear functions of a specified set of operands, and raises an error otherwise.
In the case of nested multiplications, it rearranges the terms so that the highest level
multiplication directly contains the operand from the specified set.

• split: This method additively splits an expression into a set of terms containing
specified operands and operators, and a set of terms not containing any of them.

• replace: This method performs a depth-first search of an expression, replacing any
instances of a specified operand or operator with a specified replacement.

• order: This method recursively determines the number of times a specified operator
is applied to an operand containing the same operator.

• sym_diff: This method produces a new expression containing its symbolic derivative
with respect to a specified variable. These are computed recursively via the chain
rule.

• as_ncc_operator: This method constructs the Chebyshev multiplication matrix
associated with an operand. It requires that the corresponding domain only have
a single Chebyshev basis, and that this basis forms the last axis of the domain,
which we’ll refer to as z. It further requires that the operand is constant along all
other (“horizontal”) axes, so that multiplication by the operand does not couple the
horizontal modes. Given a Chebyshev expansion of a function f as

f (z) =
Nc−1∑
n=0

fnφTn (z) (2.46)

48

the corresponding Chebyshev multiplication matrix F is given by

F =
Nc−1∑
n=0

fnMT
n (2.47)

where the individual-mode Chebyshev multiplication matrices are given by

(MT
n)i, j = 〈φ

T
i |φ

T
nφ

T
j 〉 (2.48)

=
δi, |n+p | + δi, |n−p |

2
(2.49)

and the inner product is that under which the Chebyshev modes are orthonormal.
This matrix therefore represents multiplication by the function f as a linear operator
acting on the Chebyshev coefficients of another function. That is, if g(z) = f (z)×h(z),
we have

gi = 〈φ
T
i |g(z)〉 (2.50)

= 〈φTi |
∑
n

fnφTn
∑
j

hjφ
T
j 〉 (2.51)

=
∑
n, j

fnhj(MT
n)i, j (2.52)

=
∑
j

Fi, jhj (2.53)

The method producing this matrix allows the sum to be truncated at a maximum
number of modes (Nm < Nc) and for terms to be excluded when the coefficients
are below some threshold amplitude (| fn | < δ) so that the matrix is sparse for well-
resolved functions (see Olver et al. (2013)). The resulting matrix is stored as a Scipy
sparse matrix.

• operator_dict: This method constructs a dictionary representing an expression as a
set of matrix operators acting on the pencils of coefficients for a specified horizontal
mode of a set of variables. This method requires that the expression be linear in the
specified variables and contains no operators coupling any dimensions besides the
last.
The dictionary is constructed recursively, with each z linear operator applying its ma-
trix form to the matrices produced by its operand, and each horizontal linear operator
multiplying its operand matrices by the element of its vector form corresponding to
the specified horizontal mode. Addition operators simply sum the matrices produced
by their operands. Multiplication operators build the matrices for their operand con-

49

taining one of the specified variables, and multiply these by the NCC matrix form of
their other operand.

With these methods, operators in Dedalus form a simple computer algebra system allowing
for the basic symbolic manipulation of expressions. This functionality forms the basis of
the code’s ability to construct solvers for general partial differential equations, as described
in §2.6.

2.5.6 Evaluators

An Evaluator object attempts to simultaneously evaluate a number of operator expressions
as efficiently as possible, i.e. with the least number of spectral transforms and distributed
transposes. An evaluator is instantiated with a reference to a domain object, and a dictionary
of operators and fields that form a namespace for the relevant expressions.

The expressions to be evaluated are organized into Handler objects. An individual
handler is a collection of operator expressions, a set of criteria for when to evaluate the
handler, and a processmethod for dealing with the outputs from the evaluated expressions.
Expressions, or tasks, are added to a handler via the add_tasks method, which directly
accepts operator expressions or strings which are parsed into operator expressions using the
evaluator namespace. When running an initial value problem, the handler can be set to be
evaluated on a specified cadence in terms of simulation iterations, simulation time, or real-
world time (wall time) since the start of the simulation. Handlers from the SystemHandler
class organize their outputs into a FieldSystem, while handlers from the FileHandler

class repeatedly save their outputs to disk in HDF5 files via the h5py package (§2.8).
When triggered, the evaluator examines the attached handlers and builds a list of the

tasks from each handler that is scheduled to be evaluated. It then attempts each task using the
operators’ attemptmethods to evaluate the expressions as far as possible without triggering
any transforms or transposes. If the tasks have not all completed, the evaluator merges the
remaining atoms from the remaining tasks, and moves them all to full coefficient space, and
reattempts evaluation. If the tasks have again not all completed, the evaluator again merges
the remaining atoms from the remaining tasks, and moves them forward one layout, and
reattempts evaluation. This process repeats, with the evaluator simultaneously stepping the
remaining atoms back and forth through all the layouts until all of the tasks have been fully
evaluated. Finally the process method on each of the scheduled handlers is executed.

This process is more efficient than sequentially evaluating each expression. By at-
tempting all tasks before transforming, it makes sure that no layout changes are triggered
when any operators are able to be evaluated. Additionally, it groups together all the fields
that need to be transformed between layouts so that grouped transforms and transposes can

50

be performed, minimizing the overhead and latency of these functions.

2.6 Problems

The problem classes are used to construct and represent systems of partial differential
equations. Separate classes are used for linear boundary value problems (LBVP), nonlinear
boundary value problems (NLBVP), eigenvalue problems (EVP), and initial value problems
(IVP). After a problem is created, the equations and boundary conditions are entered in plain
text, with linear terms on the LHS and nonlinear terms on the RHS. The LHS is parsed into
a sparse matrix formulation, while the RHS is parsed into an operator tree to be evaluated
explicitly.

2.6.1 Problem creation

Each problem class is instantiated with a domain and a list of variable names. Domains
may only have up to one Chebyshev basis, which must correspond to the last axis. The
linear portion of the equations must be no higher than first-order in time derivatives and
Chebyshev derivatives, so auxiliary variables should be added to the problem to render the
system first-order. Optionally, an amplitude threshold and a cutoff mode number can be
specified for truncating the spectral expansion of non-constant coefficients entered into the
problem. For eigenvalue problems, the eigenvalue name must also be passed. For initial
value problems, the temporal variable name can optionally be specified, but defaults to ’t’.

For example, to create an initial value problem for an equation involving the variables
u and v, we would write

problem = de.IVP(domain , variables=[’u’, ’v’])

2.6.2 Meta-data and preconditioning

Metadata for the problem variables can be specified through the meta attribute, and indexing
by variable name, axis, and property, respectively.

Themost commonmetadata to set here is the constancy of any variables, the parity of all
variables for each sine/cosine basis, and the ’dirichlet’ option for Chebyshev basis. This
option performs a Dirichlet preconditioning / basis-recombination that sparsifies Dirichlet
boundary conditions (interpolation at the Chebyshev interval endpoints), at the expense
of a slightly increased problem bandwidth. This can drastically improve performance for
problems formulated with only Dirichlet boundary conditions. Because the formulation
is first-order in Chebyshev derivatives, this often includes what would be e.g. Neumann
boundary conditions in a higher-order formulation.

51

For instance, we can apply Dirichlet preconditioning to all the variables in our problem
along the z axis with

problem.meta[:][’z’][’dirichlet ’] = True

2.6.3 Parameters and non-constant coefficients

Before the equations are added to the problem, any parameters, defined as fields or scalars
used in the equations besides the problem variables, are added to the parsing namespace
through the problem.parameters dictionary. Scalar parameters are simply entered by
value. Non-constant coefficients (NCCs) are entered as fields with the desired data. NCCs
used on the LHS can only couple the Chebyshev direction, so must be constant along all
other axes.

For example, on a 3D problem on a double-Fourier (x, y) and Chebyshev (z) domain,
we would enter scalar and NCC parameters as:

Scalar parameter

problem.parameters[’b’] = 1e-4

NCC parameter

z = domain.grid(2)

ncc = domain.new_field(name=’c’)

ncc.meta[’x’, ’y’][’constant ’] = True

ncc[’g’] = z**2

problem.parameters[’c’] = ncc

2.6.4 Substitutions

To simplify equation entry, substitutions can be specified which act as string-replacement
rules that will be applied during the parsing process. Substitutions can be used to provide
short aliases to quantities computed from the problem variables and to define shortcut
functions similar to python lambda functions, butwith normalmathematical-function syntax.

For example, several substitutions that might be useful in a hydrodynamical simulation
are:

Substitution defining the kinetic energy density for a

3D fluid simulation with density rho and velocity (u,v,w).

problem.substitutions[’KE_density ’] = "rho * (u*u + v*v + w*w) / 2"

Substitution defining the cartesian Laplacian of a field.

Here A and Az are dummy variables that would be replaced

by simulation variables in the equations.

problem.substitutions[’L(A,Az)’] = "dx(dx(A)) + dy(dy(A)) + dz(Az)"

52

Substitutions of the first type are created by parsing their definitions in the problem names-
pace, and aliasing the result to the substitution name. Substitutions of the second type are
turned into Python lambda functions producing their specified form in the problem names-
pace. Substitutions are composable, and form an extremely valuable tool for simplifying
the entry of complex equation sets.

2.6.5 Equation parsing

Equations and boundary conditions are entered in plain text using the add_equation and
add_bcmethods. Optionally, these methods accept a condition keyword, which is a string
specifying which horizontal modes that equation applies to. This is necessary to close
certain equation sets where, for instance, the basic equations become degenerate for the
horizontal-mean mode and/or gauge conditions need to be set on certain variables.

First, the string-form equations are split into LHS and RHS strings which are evaluated
over the problem namespace to build LHS and RHS operator expressions. The problem
namespace consists of:

• The variables, parameters and substitutions defined in the problem.

• The axis names representing the individual basis grids.

• The derivative, integration, and interpolation operators for each basis.

• Time and temporal derivatives as ’t’ and ’dt’ for the IVP.

• The eigenvalue string for the EVP.

• The universal functions wrapped through the UnaryGridFunction class.

A number of conditions confirming the validity of the LHS and RHS expressions are
then checked. For all problem types, the LHS expression and RHS must have compatible
metadata (e.g. parities). The LHS expression must be nonzero and linear in the problem
variables. The LHS must also be first-order in Chebyshev derivatives. The expressions
entered as boundary conditions must be constant along the Chebyshev axis.

For the individual problem classes, the following additional restrictions and manipula-
tions are applied to the LHS and RHS expressions:

Linear boundary value problem forms

The linear boundary value problem additionally requires that the RHS is independent of the
problem variables. This allows for linear problems with inhomogeneous terms on the RHS.
Since the LHS terms are linear in the problem variables, this symbolically corresponds to
systems of equations of the form

L · X = F (2.54)

53

whereX is the vector of problem variable fields, andL is interpreted as amatrix of operators.
The LHS expressions are expanded and transformed into canonical linear form before being
stored by the problem instance.

Nonlinear boundary value problem forms

The nonlinear boundary value problem requires no additional conditions, allowing the RHS
to be any nonlinear function of the problem variables. This corresponds to systems of
equations of the form

L · X = F (X) (2.55)

In addition to theL and F expressions, the Frechet differential of the RHS with respect
to the problem variables

FX · ∆X = ∂εF (X + ε∆X)|ε=0 (2.56)

is constructed. This is a linear operator indicating the sensitivity, or directional functional
derivative, of F with respect to changes inX along ∆X. It is constructed symbolically using
the operator methods described in §2.5.5 roughly as

dF = 0

for var , pert in zip(vars , pert):

dFi = F.replace(var , var + ep*pert)

dFi = dFi.sym_diff(ep)

dFi = dFi.replace(ep, 0)

dF += dFi

In general, the Frechet derivative of an expression will contain non-constant coeffi-
cients involving the problem variables X, which would generally couple horizontal modes.
Therefore, Dedalus only supports 1D nonlinear BVPs. The LHS and Frechet differential
expressions are expanded and transformed into canonical linear form before being stored by
the problem instance.

Eigenvalue problem forms

The eigenvalue problem requires that the RHS is homogeneous, and that the LHS termsmust
be linear in or independent of the eigenvalue, which we’ll refer to as σ. This corresponds to
systems of equations of the form

σM · X + L · X = 0 (2.57)

which are generalized linear eigenvalue problems. TheM and L expressions are extracted
by splitting the LHS expression on the presence of the eigenvalue variable, before replacing

54

it with 1. These expressions are expanded and transformed into canonical linear form before
being stored by the problem instance.

Initial value problem forms

The initial value problem requires that the LHS coefficients are time independent, the LHS
is first-order in temporal derivatives, and the RHS is independent of temporal derivatives.
This corresponds to systems of equations of the form

M · ∂tX + L · X = F (X, t) (2.58)

TheM and L expressions are extracted by splitting the LHS expression on the presence of
the time derivative dummy operator, before replacing it with the identity operator. These
expressions are expanded and transformed into canonical linear form before being stored by
the problem instance.

2.7 Solvers

Each problem type has a corresponding solver type which builds and solves the spectral
matrices for the problem equations.

2.7.1 Matrix construction

The problem classes begin by building the spectral operator matrices for the LHS expression
groups (M,L, and FX). The matrices are constructed by first taking the set of equations and
boundary conditions that apply to each pencil and calling the operator_dict method on
each expression to build the matrices acting on the corresponding coefficients of the problem
variables. For each pencil’s matrix to be solvable, the number of applicable equations must
equal the number of variables in the problem, F. For a given pencil, we refer to the operator
matrix from the i-th equation acting on the j-th variable as E i, j . Each of these matrices is
processed as follows:

• If the i-th equation contains a Chebyshev derivative on the LHS, each E i, j is left-
multiplied by the Chebyshev T-to-U conversion matrix. This has the effect of repro-
jecting all Chebyshev differential equations into Chebyshev U polynomials, rendering
all derivative matrices banded, at the expense of slightly increasing the bandwidth of
the non-derivative matrices.

• If the i-th equation contains a Chebyshev derivative on the LHS, the last row of
the each E i, j is dropped and replaced with one of the boundary conditions. This

55

implements the boundary conditions using the tau method, with a tau polynomial
corresponding to φU

Nc−1. For the system to be solvable, it requires the same number
of boundary conditions as Chebyshev differential equations.

• If the last basis is a compound basis, the rows corresponding to the final coefficient
of each subbasis, except for the last, are dropped and replaced with internal bound-
ary conditions matching the subbasis coefficients at each internal interface for each
variable. This enforces continuity of all variables across the Chebyshev subsegments.

• If the j-th variable has been marked for Dirichlet preconditioning, the boundary
conditions are moved to the top of each E i, j , which are then right-multiplied by
the Chebyshev T-to-D conversion matrix. This has the effect of rearranging the
columns so that the matrix acts on the coefficients of the Chebyshev Dirichlet basis
expansion of the corresponding variable, reducing all Dirichlet boundary conditions
from spanning Nc

z columns to spanning the just the first two columns, at the expense
of slightly increasing the bandwidth of the equation matrices.

Finally, the fully processed operator matrices are joined to produce the full precondi-
tioned pencil matrix Ẽ . Conceptually, the full pencil matrix can be thought of as the block
matrix combining the operator matrices, with the columns of blocks corresponding to the
problem variables, and the rows of blocks corresponding to the equations:

Ẽ =

Ẽ1,1 Ẽ1,2 · · · Ẽ1,F

Ẽ2,1 Ẽ2,2 · · · Ẽ2,F

...
...

. . .
...

ẼF,1 ẼF,2 · · · ẼF,F

(2.59)

Such a matrix can be constructed via Kronecker products with a size F×F placement matrix
Pi, j , where

(Pi, j)k,l = δi,kδk,l (2.60)

as

Ẽ =
F∑

i, j=0
Pi, j ⊗ Ẽ i, j (2.61)

However, even when the individual Ẽ i, j are band-limited, Ẽ would then have a bandwidth of
order FNc

z . By reversing the order of the Kronecker product and building the pencil matrix
as

Ẽ =
F∑

i, j=0
Ẽ i, j ⊗ Pi, j (2.62)

the columns and rows are grouped first by Chebyshev mode number rather than by field, as is

56

the memory ordering for FieldSystems. The bandwidth of the pencil matrix then becomes
F times the maximum bandwidth of any of the individual subblocks, which is roughly set
by the bandwidth of the non-constant coefficient expansions. Interleaved-block matrices
corresponding to the full left (T-to-U) and right (Dirichlet) preconditioning that was applied
to the subblocks are created and stored, since they will need to be applied to the RHS and
solution vectors, respectively, when solving the matrix system.

Fig. 2.6 shows the system matrices at various points of this process for Poisson’s
equation in 1D with Dirichlet boundary conditions:

∂2u
∂x2 = 1 (2.63)

u(±1) = 0 (2.64)

This equation is reduced to first-order and entered as a linear boundary value problem as

problem = de.LBVP(domain , variables=[’u’,’ux’])

problem.meta[:][’x’][’dirichlet ’] = True

problem.add_equation("dx(ux) = 1")

problem.add_equation("dx(u) - ux = 0")

problem.add_bc("left(u) = 0")

problem.add_bc("right(u) = 0")

As the figure shows, the combination of writing equations as first-order systems, mapping
derivatives to Chebyshev-U polynomials, performing Dirichlet preconditioning, and group-
ing Chebyshev modes before variables produces a highly sparse and banded matrix for the
equation. Along with limiting the bandwidth of NCC expansions, this strategy generally
produces such matrices for broad ranges of systems of differential equations.

The pencil matrices are all stored as Scipy sparse matrices. The matrices produced for
each of the LHS expression groups (M, L, and FX) are expanded to occupy the union of
their sparsity patterns so that they can be efficiently added to each other by directly adding
their entry values.

2.7.2 Linear boundary value solver

The linear boundary value solver is instantiated from a linear boundary value problem. It
first constructs the matrices L̃p = PL

p LpPR for each local pencil p from the stored LHS
expression group L. Here PL

p and PR explicitly indicate that the expression matrices have
been preconditioned from the left and the right, and the p subscripts indicate that the left
preconditioner and expression matrices vary by pencil. The solver then constructs system
handlers for evaluating the RHS equation and boundary condition expressions F .

The solver class contains a solve method, which first evaluates the RHS handlers for

57

1) T-to-T equation blocks 2) T-to-U conversion, BCs

3) Dirichlet right-preconditioning 4) Kronecker inversion

Figure 2.6: Various stages in constructing the matrices corresponding to the linear portion
of Poisson’s equation with Dirichlet boundary conditions. Top left: the original (T-to-
T) operator matrices joined in block form, with the block columns corresponding to the
variables u and ux, and the block rows corresponding to the LHS expressions dx(ux) and dx
(u) - ux, respectively. The T-to-T differentiation matrices are dense and upper triangular.
Top right: thematrices after T-to-U conversion has been applied and the boundary conditions
have been prepended. The derivatives are rendered sparse by the T-to-U conversion at the
expense of slightly increasing the bandwidth of the identity block. The boundary conditions
involve all coefficients of u. Bottom left: the matrices after Dirichlet preconditioning
has been applied from the right, sparsifying the boundary rows at the expense of slightly
increasing the bandwidth of the equation blocks. Bottom right: the same matrix, but with
the Kronecker product reversed to group bymodes rather than by variables. This final matrix
is highly sparse and completely banded.

58

F . At this point, the linear boundary value problem is fully discretized, and conceptually
consists of solving an independent matrix problem for each pencil given by

LpXp = Fp (2.65)

The equivalent preconditioned system is given by

PL
p LpPR︸ ︷︷ ︸

L̃p

(PR)−1Xp︸ ︷︷ ︸
X̃p

= PL
p Fp︸︷︷︸
F̃p

(2.66)

For each pencil, this system is solved in the following manner:

• The RHS vector Fp is constructed by taking the pencil data from the RHS handlers,
and replacing the proper rows in the equation vector with the boundary condition
values.

• The pencil’s left-preconditioner is applied to FP to produce F̃p.

• Since L̃p is sparse and banded, it can be efficiently solved against F̃p to produce X̃p.
This is done using the sparse direct solver from the SuperLU library and wrapped
through the scipy.sparse package.

• The state-vector pencil is recovered from X̃p by reapplying the right-preconditioner
as

PR X̃p = PR(PR)−1Xp = Xp (2.67)

and the result is assigned to the state-vector field system.

After the RHS field system is evaluated, this process is trivially parallelized over
pencils, with each process performing a series of local sparse matrix solves for its local
pencils. The sparsity and bandedness of the matrix L̃p makes the linear solve an efficient
process, executing in O(Nc

z) time. Finally, although (PR)−1 is a dense matrix, it never
needs to be constructed, as reapplying the sparse PR matrix to the output of the linear solve
effectively reverses the implicit preconditioning of the unkowns.

2.7.3 Nonlinear boundary value solver

The nonlinear boundary value solver is instantiated from the nonlinear boundary value
problem. It constructs the matrices L̃p for each pencil and handlers for evaluating the
expressions F and L · X.

The solver class contains a newton_iteration method, which performs a single
iteration of Newton’s method to move the state vector towards the nonlinear solution.

59

Conceptually, the Newton step iteratively approaches the solution of the nonlinear problem

LpXp = F(X)p (2.68)

by solving for the update δXn to the state vector that will cause the future state vector
Xn+1 = Xn + δXn to solve the NLBVP when linearized around the current iteration Xn:

LpXn+1
p = F(Xn+1)p (2.69)

Lp(Xn
p + δXn

p) = F(Xn + δXn)p (2.70)

≈ F(X)p + FXδXp (2.71)

=⇒ (Lp − FX)︸ ︷︷ ︸
Ap

δXp ≈ F(X)p − LpXp︸ ︷︷ ︸
Bp

(2.72)

The Newton iteration begins by evaluating the RHS handlers for F and L · X and building
the matrices F̃p, which discretize the Frechet-derivative of F using the current state vector.
For each pencil, the update is then determined in the following manner:

• TheRHSvector Bp is constructed by combining the pencil data from theRHS handlers
and inserting the boundary condition values.

• The left-preconditioner is applied to produce B̃p.

• The LHS matrices are combined to produce Ãp, which is solved against B̃p using the
SuperLU sparse direct solver to produce δX̃p.

• The right-preconditioner is applied to recover δXp.

• The state vector is updated as Xp → Xp + δXp.

We note that the sparse matrix being solved changes at each iteration, since it depends
on the evaluation of the Frechet derivative at the current state vector. The magnitude of the
perturbations can be monitored to determine when the solver has converged. Convergence
can depend sensitively on the initial values of the state vector, but the iterations converge
rapidly (quadratically) for sufficiently good starting positions. The initial conditions are set
by modifying the fields in the solver.state field system.

2.7.4 Eigenvalue solver

The eigenvalue solver is instantiated from the eigenvalue problem. It constructs the M̃p

and L̃p matrices and solves the eigenvalue problem for a single pencil at a time, storing
the resulting eigenvalues and eigenvectors. The class contains a set_state method which

60

will set the solver’s state vector to the specified eigenmode for visualization or further
computation.

The solver class contains two methods for solving the generalized eigenvalue problem
for a specified pencil, which conceptually takes the form

σMpXp + LpXp = 0 (2.73)

Dense solver

The first is the solve_dense method, which converts the LHS matrices to dense arrays
and uses the scipy.linalg.eig routine to directly solve the full generalized eigenvalue
problem. This has the advantage of solving for all of the FNc

z eigenmodes of the discretized
system. However, the computational cost scales as O((FNc

z)
3), which becomes prohibitive

at large resolutions.

Sparse solver

The second is the solve_sparse method, which solves for a subset of the eigenmodes near
a specified target eigenvalue σT . The generalized problem for the preconditioned matrices
is first rearranged as a regular eigenvalue problem using a shift and inversion:

(L̃p + σT M̃p)
−1M̃p X̃p = −

1
(σ − σT)

X̃p = λp X̃p (2.74)

A Scipy sparse linear operator is constructed to represent the left-side operator. This
operator is applied to a vector by first applying M̃p, and then solving the result against
(L̃p + σT M̃p). This solve is done by precomputing the LU decomposition of the matrix
using SuperLU. This generalized linear operator is then passed to the scipy.sparse.

linalg.eig routine, which uses the implicitly-restarted Arnoldi method in ARPACK to
iteratively compute a specified number of eigenmodes with the largest magnitude λ. The
right-preconditioner is applied to the resulting eigenmodes to recover Xp, and the computed
values of λ are inverted and shifted to recover the corresponding σ.

This shift-and-invert formulation allows us to use sparse regular eigenvalue solvers for
our generalized eigenvalue problem, with the requirement that (L̃p + σT M̃p) is full rank.

2.7.5 Initial value solver

The initial value solver is instantiated from the initial value problem. It is instantiated with
one of the timestepping classes as an argument, defining the integrator to be used to step the
problem forward in time. The solver constructs the M̃p and L̃p matrices for each pencil and

61

handlers for evaluating the RHS expressions F .
Conceptually, the discretized problem takes the form

Mp∂t Xp + LpXp = F(X, t)p (2.75)

where the systems for different pencils are only coupled through the RHS terms. In general,
Mp may not be a full-rank matrix, due to the presence of temporally algebraic or diagnostic
constraint equations and boundary conditions. This system is integrated using mixed
implicit-explicit schemes, where the LHS terms are integrated implicitly, and the RHS
terms are integrated explicitly. The timestepping loop is written by the user, allowing for
detailed control of and interaction with the model as timestepping progresses.

Initial conditions

Before beginning a simulation, the initial conditions of the solver’s state system must be set.
The solver state is stored in the solver.state field system, and initial conditions are set
by directly modifying the variables in this system before beginning integration, e.g. for a
simulation involving a third Chebyshev derivative:

Reference local grid and state fields

x = domain.grid(0)

u = solver.state[’u’]

ux = solver.state[’ux’]

uxx = solver.state[’uxx’]

Setup smooth triangle with support in (-1, 1)

n = 20

u[’g’] = np.log(1 + np.cosh(n)**2/np.cosh(n*x)**2) / (2*n)

u.differentiate(’x’, out=ux)

ux.differentiate(’x’, out=uxx)

When possible, it is best to begin a simulation with consistent initial conditions that satisfy
the algebraic equations and boundary conditions in the problem. Initial conditions that are
inconsistent may introduce persistent errors or stability problems with some timestepping
schemes.

Initial conditions can also easily be loaded from the analysis files produced by Dedalus
(§2.8) via the solver.load_state method. This is particularly useful for restarting simu-
lations from a checkpoint saved by a previous simulation.

Time evolution

The step method of the initial value solver advances the state by one timestep, producing
Xn+1 from Xn, where the superscripts denote the temporal iteration of the state vector. The

62

method accepts the timestep dt as an argument, along with an keyword flag trim. This flag
will examine the handlers attached to the problem evaluator that are triggered to evaluate
on a given cadence in simulation time and trim the provided timestep in order to exactly hit
the nearest multiple of these cadences if it would be passed by taking the full timestep. The
method then gathers the state system, calls the specified integration routine’s step method
to update the system, scatters the updated state system, and updates the solver’s iteration
count.

In general, the integration step will evaluate the RHS handlers to perform the temporal
integration andwill simultaneously evaluate any other scheduled handlers attached the solver
evaluator.

Timestep determination

All of the implemented timestepping schemes accommodate changing the timestep between
iterations during a simulation. The CFL class in the dedalus.extras.flow_tools module
can help determine what timestep might adequately resolve physical timescales in the
evolving solution. The add_frequencies and add_velocities methods allows users to
enter expressions corresponding to state-dependent frequencies and velocities of processes in
their simulation, using the same string-based parsing system that is used to enter equations.
Internally, the CFL class builds an auxiliary handler to evaluate these frequencies and
velocities at a specified cadence, and as the simulation runs, the suggested timestep is
determined via the compute_dt method as follows:

• At each point on the grid, all of the specified frequencies are added.

• The maximum total frequency from the entire grid is taken and inverted to determine
the CFL timestep.

• This timestep is then multiplied by a safety factor, specified at the CFL instantiation
with the safety keyword. Empirically, we have often found that setting this factor
between 0.1 and 0.5 helps to maintain stability.

• The resulting timestep is then bounded to lie above an absolute minimum level and
a minimum fraction of the previous timestep, specified by with the min_dt and
min_change keywords, and below an absolute maximum level and a maximum frac-
tion of the previous timestep, specified with the max_dt and max_change keywords.

• If the fractional change from the previously computed timestep to the newly deter-
mined timestep is sufficiently small, as determined by the threshold parameter, the
previously computed timestep is returned. Otherwise, the newly determined timestep
is returned.

63

The absolute minimum and maximum can be useful to prevent the timestep from grinding to
a halt due to a spurious feature of the solution or vastly overstepping relevant dynamics. The
bounds on the relative change in the timestep help prevent ill-conditioning that may occur
for some timestepping schemes when the timestep varies too suddenly. The thresholding
option allows the timestep to be frequently reevaluated but avoids modifying the timestep
by inconsequential amounts. This can have significant performance advantages since the
timestepping algorithms computematrix factorizations depending on the timestep. Comput-
ing these factorizations is typically much slower than using them to perform an integration,
so when the timestep remains the same for sequential iterations, the stored factorizations
can be reused to dramatically increase the overall timestepping performance.

Termination

To help determine when a simulations should terminate, the initial value solver implements
the ok property, which determines whether any of the following three criteria apply:

• The simulation time has exceeded the value assigned to the solver.stop_sim_time
attribute.

• The wall time (in seconds) since the solver was instantiated has exceeded the value
assigned to the solver.stop_wall_time attribute.

• The iteration count has exceeded the value assigned to the solver.stop_iteration
attribute.

The wall-time stop is particularly useful for stopping simulations before hard time-limits
on HPC job submissions have been reached, allowing for clean termination and potential
post-processing of the data before a job is terminated by the system.

With these features, a typical timestepping loop that will advance an IVP in a Dedalus
script may take the form:

while solver.ok:

dt = CFL.compute_dt ()

solver.step(dt)

This will continue timestepping until any of the specified stopping criteria are reached,
adjusting the timestep along the way via the CFL handler.

2.7.6 Timesteppers

Rather than implementing a single specific timestepping scheme, Dedalus implements gen-
eral algorithms for applying mixed implicit-explicit (IMEX) multistep and Runge-Kutta
integrators along with a range of specific integrators of each type. These IMEX schemes

64

implicitly integrate the LHS terms and explicitly integrate the RHS terms. This provides
temporal stability for linearly stiff equations while avoiding nonlinear/iterative algorithms
for integrating the nonlinear terms.

Multistep IMEX integrators

A general multistep IMEX scheme with s steps temporally discretizes systems of the form
of Eq. (2.75) into the general form

s∑
j=0

ajMpXn−j
p +

s∑
j=0

bjLpXn−j
p =

s∑
j=1

cjF
n−j
p (2.76)

where in general the coefficients aj , bj , and cj depend on the timesteps separating the stages,
dtn = tn − tn−1. This expansion is rearranged to solve for the new state Xn

p as

(a0Mp + b0Lp)︸ ︷︷ ︸
An
p

Xn
p =

s∑
j=1

cjF
n−j
p − ajMpXn−j

p − bjLpXn−j
p︸ ︷︷ ︸

Bn
p

(2.77)

The MultistepIMEX class implements this generalized structure using the precondi-
tioned matrices. The class uses double-ended queues to store CoeffSystems containing
M̃ X̃ , L̃ X̃ , F̃, and dt for the most recent s steps. The class contains a step method, called
with the latest timestep dtn, which evaluates the algorithm to produce Xn in the following
steps:

• The timestep queue is rotated with the newest value replacing the oldest.

• The scheme coefficients aj , bj , cj are evaluated using the timestep queue via the
compute_coefficients method, which must be implemented by each subclass to
define a specific multistep scheme.

• The M̃ X̃n−1 and L̃ X̃n−1 data for all local pencils are evaluated and stored in the
respective coefficient systems. These can be evaluated pencil-by-pencil using the
state vector data without building the dense inverse of the right preconditioner simply
as e.g.

L̃p X̃p = PL
p LpPR(PR)−1Xp = PL

p LpXp (2.78)

• The RHS handler is evaluated and the equation and boundary data for each pencil are
combined, left-preconditioned, and stored in the F̃n−1 coefficient system.

• The data from the M̃ X̃ , L̃ X̃ , and F̃ coefficient systems are combined using the scheme
coefficients to produce the B̃n data.

65

• For each pencil, M̃p and L̃p are combined to produce Ãn
p, which is solved against B̃n

p

to produce X̃n
p . This solve is done using the SuperLU sparse direct solver wrapped

in Scipy. Optionally, the LU decomposition of each Ãn
p can be stored and reused to

reduce the solve time if the coefficients a0 and b0 remain unchanged from the previous
iteration.

• The right-preconditioner is applied to recover Xn
p , which is assigned to the state-vector

field system.

Specific multistep schemes are implemented by subclassing the MultistepIMEX base
class and implementing the compute_coefficients method to produce the scheme coef-
ficients from the current and previous timesteps. Dedalus currently implements a number
of Crank-Nicolson leap-frog, Crank-Nicolson Adams-Bashforth, and semi-implicit BDF
methods from Wang et al. (2008), from first to fourth order. An advantage of the multistep
methods is that they only require a single evaluation of the RHS per iteration. However, since
they depend on previous iterations of the state variables, they cannot be ran at full-order
when beginning a simulation. Instead, each scheme iteratively falls back on a lower-order
scheme for the first several iterations of a simulation to build up a sufficient history. These
schemes may also become ill-conditioned if the timestep is varied too abruptly.

IMEX Runge-Kutta integrators

AgeneralRunge-Kutta IMEXscheme temporally discretizes systems of the formofEq. (2.75)
by constructing s stages indexed by i as

MpXn,i
p − MpXn,0

p + dt
i∑

j=0
Hi, jLpXn, j

p = dt
i−1∑
j=0

Ai, jF
n, j
p (2.79)

where Fn, j is evaluated at time tn, j = tn,0 + dtcj , Xn,0 = Xn, and tn,0 = tn. The H, A, and
c tableaus define the particular scheme. This expansion is rearranged to sequentially solve
for the i = 1, ..., s stages as

(Mp + dtHi,iLp)︸ ︷︷ ︸
Ai
p

Xn,i
p = MpXn,0

p + dt
i−1∑
j=0

Ai, jF
n, j
p −

i−1∑
j=0

Hi, jLpXn, j
p︸ ︷︷ ︸

Bi
p

(2.80)

Our implemented methods use the final stage as the advanced solution, i.e. Xn+1 = Xn,s and
tn+1 = tn,s = tn + dt.

The RungeKuttaIMEX class implements this generalized structure using the precondi-

66

tioned matrices. The class creates a CoeffSystem to store M̃ X̃n,0, and s systems each to
store L̃ X̃n,i and ˜Fn,i for all of the stages. The class contains a step method, called with the
timestep dtn+1, which evaluates the algorithm to produce Xn+1 in the following steps:

• The M̃ X̃n data for all local pencils are evaluated and stored in the respective coefficient
system.

• Then for each stage i = 1, ..., s:

– TheRHS handler is evaluated and the equation and boundary data for each pencil
are combined, left-preconditioned, and stored in the F̃n,i−1 coefficient system.
For each pencil, L̃ X̃n,i−1 is evaluated and stored in the respective coefficient
system.

– The data from the M̃ X̃n,0, L̃ X̃n,..., and F̃n,... coefficient systems are combined
using the scheme tableaus to produce the B̃i data.

– For each pencil, M̃p and L̃p are combined to produce Ãi
p, which is solved against

B̃i
p to produce X̃n,i

p . This solve is done using the SuperLU sparse direct solver
wrapped in Scipy. Optionally, the LU decomposition of each Ãi

p can be stored
and reused to reduce the solve time if the timestep dt has remained unchanged
from the previous iteration.

– The right-preconditioner is applied to recover Xn,i
p , which is assigned to the

state-vector field system. The solver simulation time is set to tn,0 + dtci.

Specific multistep schemes are implemented by subclassing the RungeKuttaIMEX base
class and implementing the H, A, and c tableaus as array-valued class attributes. Dedalus
currently implements a number of first, second, and third-order methods from Ascher et al.
(1997) and Sprague et al. (2006). A particular advantage of the Runge-Kutta methods
is that they do not depend on any previous iterations of the state variables, so they can
take full-order steps at the beginning of a simulation and trivially accommodate adaptive
timestepping. The cost is that the higher-order schemes perform multiple evaluations of
the RHS per iteration, but they tend to run stably with larger CFL safety factors than the
multistep schemes.

For both the multistep and Runge-Kutta schemes, the implemented base classes make it
very straightforward to implement additional timestepping algorithms. This allows users to
easily test a variety of schemes and find the best option for their particular problem. The use
of coefficient systems in the base class methods makes it efficient to step forward multiple
pencils simultaneously, reducing the potential overhead on applications that are not fully
scaled out (that is, with potentially many pencils per process).

67

2.8 Analysis and post-processing

Dedalus includes a framework for evaluating and saving arbitrary analysis tasks while an
initial value problem is running. This system utilizes the same symbolic parsing system as
is used to specify equations and efficiently evaluates the analysis tasks alongside the RHS
terms on a specified cadence. Post-processing tools simplify merging and interacting with
the produced analysis files.

2.8.1 File handlers

After building a initial value solver, instances of the FileHandler class can be attached
to the solver’s evaluator object to coordinate the periodic output of some simulation data
to HDF5 files using the h5py library. Each file handler saves a particular set of tasks at
a particular cadence. The file handler is instantiated with a path for the output directory
where the corresponding data should be saved and the cadence at which handler’s tasks
should be evaluated. This cadence can be in terms of any combination of simulation time
(specified with sim_dt), wall time (specified with wall_dt), and iteration (specified with
iter). Simulation time cadences are often useful for data analysis; wall time cadences are
often useful for checkpointing, e.g. saving the full state of a simulation every hour. To limit
the file sizes produced by the handler, the outputs are split up into different sets over time,
each containing some number of writes that can be limited with the max_writes keyword.
For instance, to setup a file handler to be evaluated every few iterations:

analysis = solver.evaluator.add_file_handler(’analysis ’, iter=5,

max_writes=100)

Multiple file handlers can be instantiated to compute and save different sets of tasks
at different cadences. For instance, you may want to occasionally save full copies of the
state variables for checkpointing, more frequently save snapshots of some variables for
visualization, and very frequently save integrated/scalar quantities such as the total energy
in the simulation.

2.8.2 Analysis tasks

Tasks, or expressions to be computed and saved by the file handler, are added to a given
handler using the add_task method. Tasks are entered in plain text and parsed using the
same namespace that is used for equation entry. For each task the output layout, scaling
factors, and a name can also be specified. For instance, creating a task to evaluate the kinetic
energy density of a flow might look like:

analysis.add_task("0.5*rho*(u**2+v**2+w**2)", layout=’g’, name=’KE’)

68

For checkpointing, you can also simply specify that all of the state variables should be saved:

analysis.add_system(solver.state , layout=’g’)

2.8.3 Post-processing

By default, the output files for each file handler are arranged hierarchically as follows:

1. At the top level is the base folder taking the name that was specified when the handler
was constructed, e.g. . / analysis/.

2. Within the base folder are subfolders for each set of outputs, with the same name plus
a set number, e.g. analysis_s1/.

3. Within each set subfolder are HDF5 files containing the local data for each process,
with the same name plus a process number, e.g. analysis_s1_p1.h5.

Often it is preferable to deal with the global dataset when performing analysis or
visualization in post-processing. The distributed process files can be easily merged into
global files for each set using the merge_process_files function from the dedalus.

tools.post module. For some analysis, it is additionally convenient to merge the output
sets together into a single file that is global in space and time, which can be done with
the merge_sets function. However, this can generate very large files, and is not usually
necessary for analysis that simply slices over time, e.g. individually plotting each output
of an analysis task. To assist with performing such tasks in parallel, the visit_writes

function will coordinate all available processes to apply a given function to each output
across all sets from a handler.

Together, the symbolic specification of analysis tasks and helper functions for efficiently
merging and interacting with the output files can dramatically simplify user interactions with
simulation products. High-level plotting functions for plotting slices of fields and tasks are
implemented in the dedalus.extras.plot_tools module, and example scripts utilizing
these tools to construct output visualizations in parallel are available. Additionally, the
HDF5 output file format was chosen because it is widely used in the scientific community,
and allows users to easily examine and visualize simulation outputs using a wide variety of
tools and languages.

69

Figure 2.7: Strong scaling results from an incompressible hydrodynamics test problem at
several resolutions on the NASA Pleiades supercomputer, with resolution increasing from
the lower left to the upper right. Dashed lines indicate the ideal scaling from the lowest-
core-count runs. Multiple dots for the same core count correspond to different process mesh
shapes. Dedalus typically scales efficiently down to ∼ 10 pencils per core.

2.9 Benchmarks

2.9.1 Parallel scaling

A parallel scaling suite18 for Dedalus has been developed and made publicly available by
BenjaminBrown. Fig. 2.7 shows strong-scaling results for an incompressible hydrodynamics
simulation on the NASA Pleiades supercomputer19. Dedalus shows efficient scaling for 3D
problems to thousands of cores. In this test, and in other tests, we observe that the parallel
scaling efficiency of Dedalus falls off when there are ∼ 10 pencils per core. Further
optimizations are planned to improve scaling efficiency, primarily the implementation of
hybrid parallelization to reduce message-passing overhead.

2.9.2 Kelvin-Helmholtz accuracy benchmark

Lecoanet et al. (2016) performed an accuracy benchmark comparing the finite volume code
Athena20 and Dedalus. Both codes were used to examine the Kelvin-Helmholtz instability
in a moderate Mach-number compressible flow. It was found that at low-to-moderate
resolution, numerical errors from the finite volume method can cause unphysical secondary

18https://bitbucket.org/exoweather/incompressible_ns_tg/src/default/
19https://www.nas.nasa.gov/hecc/resources/pleiades.html
20https://github.com/PrincetonUniversity/Athena-Cversion

70

https://bitbucket.org/exoweather/incompressible_ns_tg/src/default/
https://www.nas.nasa.gov/hecc/resources/pleiades.html
https://github.com/PrincetonUniversity/Athena-Cversion
https://bitbucket.org/exoweather/incompressible_ns_tg/src/default/
https://www.nas.nasa.gov/hecc/resources/pleiades.html
https://github.com/PrincetonUniversity/Athena-Cversion

instabilities to develop within the rolls created by the flow. By directly comparing the
nonlinear evolution of the flows at late times, the authors find that the finite-volume method
requires a resolution of 163842 cells to avoid these spurious instabilities and achieve the
same accuracy as the spectral method at a resolution of 20482 modes (Fig. 2.8).

Athena
10242

Athena
40962

Athena
163842

Dedalus
20482

Dedalus
40962

t = 2

t = 4

t = 6

t = 8

Figure 2.8: Snapshots of a moderate Mach-number Kelvin-Helmholtz instability test prob-
lem simulated at various resolutions with a finite volume code (Athena) and Dedalus. The
finite volume method introduces small errors which trigger unphysical secondary instabili-
ties in the vortex rolls. These spurious instabilities disappear as the simulation resolution is
increased. Quantitative comparisons show comparable accuracy between the finite volume
method with 163842 degrees of freedom and the spectral method with 20482 degrees of
freedom. Figure adapted from Lecoanet et al. (2016)

This test demonstrates the power of high-order methods for solving PDEs with smooth
solutions. At low-to-moderate Mach numbers with finite dissipation, the flow solution lacks
strong shocks and its spectral expansion converges rapidly. Generally, for incompressible and
low-Mach-number flows in simple geometries, the rapid convergence of spectral methods
outweighs their larger per-iteration computation cost, making them the ideal method for
simulating a broad range of astrophysical and geophysical flows.

71

72

Part II

Glacial Meltwater Plumes

73

Chapter 3

Introduction to melt-driven plumes

3.1 Global ice balances and sea-level rise

Roughly 3 × 107 km3 of water is stored as ice in glaciers, ice sheets, and ice shelves around
the world. This volume of ice has the potential to raise global sea-levels by roughly 65 m
if melted (Climate Change, 2009). This volume is dominated by dominated by the ice
sheets and ice shelves of Antarctica and Greenland, which could contribute 58 m and 7 m
to sea-level rise, respectively, and could potentially further alter the climate by modifying
large-scale ocean currents. The melting of the remaining global stores of ice, primarily
mountain glaciers and permafrost, could have substantial local impacts, but could only
potentially contribute 0.5 m to sea-level rise. Understanding the dynamics and stability of
the ice sheets and ice shelves in Antarctica and Greenland is therefore key to predicting the
future sea level rise in response to a changing climate on Earth.

The basic hydrological cycle in Greenland and Antarctica begins with inland precipi-
tation. Snowfall and freezing rain compact to form ice sheets 1 − 3 km thick. These sheets
flow downhill towards the coasts as viscous gravity currents. On large scales, ice typically
flows as a shear-thinning fluid, meaning that the viscous resistance to flow decreases as the
ice flows faster. This property leads to the formation of fast-moving ice streams as the ice
sheets flow down through valleys nearing the coastlines. Melting may occur at the surface
of the ice sheets once they reach low latitudes, creating water that runs off the surface and
drains to the bed of the ice sheet. Upon reaching the coast, the ice sheets can spread to form
floating ice shelves, or terminate as tidewater glaciers with nearly vertical faces. At this
point, the glaciers lose mass to the ocean via calving (the mechanical breakup of ice into
the ocean) and submarine melting.

The net mass trends of the Greenland and Antarctic ice sheets are determined by
the balances of accumulation through precipitation and mass-loss due to surface melting,
submarine melting, and calving. Fig. 3.1 shows measurements of the the surface mass
balance (precipitation minus surface melting) and surface velocities of the Greenland and
Antarctic ice sheets from the 2013 IPCC report. In Antarctica, the largest contributor to

75

Surface mass balance Ice sheet velocity

Figure 3.1: Left: Mean ice sheet surface mass balance (precipitation minus surface melt)
in Greenland and Antarctica from 1989-2004 from regional climate modeling. Right: Ice
sheet surface velocities in Greenland and Antarctica for 2007-2009 measured using satellite
data. Figures adapted from Climate Change (2009). Greenland and Antarctica not shown
to scale.

76

mass-loss is submarine melting under large, slow-moving ice shelves (Dinniman et al.,
2016). In Greenland, the largest contributor to mass-loss is calving from the front of the
vertical fronts of fast-flowing glaciers entering fjords (Straneo et al., 2015). Observations
indicate current net mass loss rates of ∼ 150 Gt/yr from Antarctica and ∼ 215 Gt/yr from
Greenland, combining to cause ∼ 1 mm/yr in global sea-level rise (Climate Change, 2009).
These rates are increasingly rapidly, having more than doubled in the last decade.

3.2 Models of submarine melting

The rapid increase in net ice loss from Greenland and Antarctica has motivated the investi-
gation of the physical processes determining mass loss rates and their sensitivity to changes
in global climate. Medium and large-scale models of Greenland’s glacial fjords and the
Antarctic seas have been used to begin examining the interplay between changes in ocean
circulations and submarine melting (Kimura et al., 2014; Sciascia et al., 2013). However, to
capture such large-scale dynamics, these studies are forced to use subgrid closures to model
the melting dynamics and flows at the ice-ocean interface.

Independent studies are required to develop and test effective subgrid models for the
ice-ocean boundary layer for the broad ranges of conditions present in Greenland and
Antarctica. Turbulent transfer closures have been calibrated against laboratory experiments
(McConnochie et al., 2017) and observed melt rates (Jenkins et al., 2010) in the presence of
imposed flows. These closures have been used effectively in models of sub-shelf circulations
(Dinniman et al., 2016) and to parameterize melting from the subglacial discharge of surface
meltwater (Jenkins, 2011, 2016; D A Slater et al., 2015; Donald A Slater et al., 2016).

When external flows are weak, however, the buoyancy of the melt from the face of
the glacier drives a turbulent plume up along the ice-ocean interface. The statistics of such
plumes and their impact on melt rates are uncertain since the buoyancy of the plume is
directly tied to the molecular processes at the interface and may be strongly impacted by the
ambient environment (Magorrian et al., 2016; McConnochie et al., 2016a). A number of
studies have begun examining the melt rates in these plumes using turbulent plume theory,
simulations, and experiments (Gayen et al., 2015, 2016; Kerr et al., 2015; McConnochie
et al., 2016b; Wells et al., 2008). Additional local models capable of resolving the turbulent
dynamics at the ice-ocean interface may assist in the development and testing of more
accurate closures for submarine melting in this regimes.

77

3.3 Governing equations for flow near melting boundaries

3.3.1 Interior equations

Away from the boundary, the appropriate equations for the water are the Navier-Stokes
equations under the Boussinesq approximation. These equations describe the conservation
of mass, momentum, heat, and salt in low-Mach number flows near constant density:

∇ · u = 0 (3.1)

∂u
∂t
+ u · ∇u = −∇p +

ρ − ρa
ρl

geg + ∇ · ν(∇u + ∇uT) (3.2)

∂T
∂t
+ u · ∇T = ∇ · κ∇T (3.3)

∂S
∂t
+ u · ∇S = ∇ · D∇S (3.4)

for a hydrostatically balanced ambient state ρa, reduced pressure perturbation p, and refer-
ence liquid density ρl. For the ocean, the density follows the equations of state of seawater

ρ = ρ(T, S, d) (3.5)

which shows appreciable nonlinearity over the range −5◦ < T < 35◦, 0 psu < S < 40 psu
and 0 km < d < 1 km. However, for small departures from the ambient temperature and
salinity profiles, we may linearize the equation of state as

ρ − ρa ≈ ρl(−α(T − Ta) + β(S − Sa)) (3.6)

With this approximation, and taking the viscosity ν and thermal and salt diffusivities κ
and D to be constant, the equations simplify to

∇ · u = 0 (3.7)

∂u
∂t
+ u · ∇u = −∇p + (−α(T − Ta) + β(S − Sa))geg + ν∇2u (3.8)

∂T
∂t
+ u · ∇T = κ∇2T (3.9)

∂S
∂t
+ u · ∇S = D∇2S (3.10)

78

Further defining the thermal and salinity buoyancy anomalies as

bT = αg(T − Ta) (3.11)

bS = −βg(S − Sa) (3.12)

gives us
∇ · u = 0 (3.13)

∂u
∂t
+ u · ∇u = −∇p − (bT + bS)eg + ν∇2u (3.14)

∂bT

∂t
+ u · ∇bT + u · ∇αgTa = κ∇

2bT + κ∇2αgTa (3.15)

∂bS

∂t
+ u · ∇bS − u · ∇βgSa = D∇2bS − D∇2βgSa (3.16)

3.3.2 Boundary conditions

At the ice-ocean interface, the boundary conditions are given by the conservation of mass,
energy, and salt across the interface, and the constraint that the interface lies on the liquidus
relation for ice and saltwater.

Consider an interface initially at a position x = 0, with positive values of x extending
into the ocean, and negative values of x into the ice. In the following, subscripts l, s, and
i will denote properties at the edge of the liquid water region, edge of the solid ice region,
and at the interface, respectively.

Mass conservation across the melting interface is given by

ρsUs = ρlUl (3.17)

with reference liquid density ρl, meltwater velocity Ul, reference solid density ρs, and solid
velocity relative to interface Us. Ul and Us are both taken to be positive for melting.

Conservation of energy across the melting interface is given by

ql = qs + ρsLUs (3.18)

where ql is the heat flux out of the liquid (q = ρcκ∂xT where c is the specific heat capacity),
qs is the heat flux into the solid, and L is the latent heat of fusion. The thermal profile in
the ice can be solved with a simple boundary-layer approximation to give

qs = ρscs(Ti − Ts)Us (3.19)

79

where Ts is the far-field temperature in the solid. The thermal balance can then be rewritten
as

clκl∂xTl = [cs(Ti − Ts) + L]Ul (3.20)

Conservation of salinity across the melting interface is given by

rl = ρlSiUl − ρsSsUs = ρlUl(Si − Ss) (3.21)

where rl is the salt flux out of the liquid (r = ρD∂xS), Si is the interface salinity, and Ss is
the solid salinity.

Finally, the interface is required to lie on the liquidus relation for ice andmelt-water. We
approximate the liquidus with a linearization in salinity and depth (as a proxy for pressure)
as

Ti = TL(Si, d) ≈ Tm − λd − Γ(Si − Ss) (3.22)

where Tm is the reference freezing point, λ is the freezing point depth dependence, d is the
depth from the surface, and Γ is the freezing point salt slope.

Over the range 0 < d < 1000 m and 0 < Si < 40 psu, the density ratio of ice to
water at the freezing point varies only slightly with 0.88 < ρs/ρl < 0.92, so can be well-
approximated as a constant. Over a similar range, the ratio of the latent heat of melting at
the heat capacity of ice near the freezing point is 158 K < L/cs < 159 K, so the heat flux
into the solid can be neglected in the thermal balance.

Even with these simplifications, the boundary conditions remain a nonlinear system
coupling the interface values of T and S and their wall-normal derivatives. To make
analytical progress and build intuition for the behavior of this system, we examined a
simplified problem which may be seen as a limited analog of the full melting dynamics.

80

Chapter 4

Convection from a heated sidewall in a thermally stratified fluid

This work was supervised by Glenn Flierl and Andrew Wells.

4.1 Introduction

The classic paradigm of buoyancy-driven convection is Rayleigh-Benard convection, where
the top and bottom boundaries force an unsteady vertical buoyancy gradient within a fluid.
In many environmental and industrial processes, however, buoyancy may be provided via an
inclined or vertical boundary. A wide range of studies have examined laminar and turbulent
convection in a differentially heated vertical slot, a close analogy to the Rayleigh-Benard
problem, but rotated to the vertical (Bergholz, 1978). For large forcings in these geometries,
the turbulence fills the entire width of the slot (Cimarelli et al., 2017).

Semi-infinite domains bounded by a single wall serve as a better model for geophysical
flows, such as meltwater plumes at the ice-ocean interface of marine-terminating glaciers.
In an unstratified fluid, the flow driven by a lateral boundary becomes wider and more
turbulent with height (Armfield et al., 2007; Wells et al., 2008). An ambient stratification,
as is often present in geophysical scenarios, however, may alter the behavior of turbulent
plume with height, since motion against the stratification modifies the energy of the flow.

As a first approximation to the geophysical problem of melt-driven convection in the
presence of an ambient stratification, we consider the simple case of convection driven by
wall held at a fixed temperature anomaly against a semi-infinite fluid with a stable thermal
stratification. We further consider a local portion of the fluid near the forced boundary, and
assume the flow to be periodic along the face of the boundary, removing end effects near the
bottom or top of the wall. With this geometry, the problem becomes homogeneous along
the boundary and admits a steady 1D solution consisting of oscillating buoyancy and upflow
layers parallel to the wall which decay with distance from the wall. The stability of this
solution in 2D for a vertical wall was thoroughly studied by Gill et al. (1969).

Fedorovich et al. (2009) studied the turbulent saturation of a similar flow, where a buoy-
ancy flux rather than a buoyancy anomaly is imposed at a vertical boundary in a stratified

81

fluid. Here we explore the turbulent regime of the problem with a fixed buoyancy anomaly
using direct numerical simulations, including walls inclined away from the vertical. In par-
ticular, we seek to determine how the heat flux from the wall scales with the thermal driving
and fluid parameters in the turbulent regime. First, we introduce the model and summarize
its laminar solutions and their stability. We then perform a series of two-dimensional direct
numerical simulations of the governing equations to examine the transition to turbulence
and the statistics of the turbulent state. Finally, we comment on the applicability of this work
as a simplified model for melt-driven plumes in fresh water, and quantify the corresponding
melt rate estimates.

4.2 Model definition

4.2.1 Governing equations

We consider a Boussinesq fluid with a single buoyancy component, constant kinematic
viscosity µ, and constant buoyancy diffusivity κ. The total buoyancy field is decomposed
into a steady ambient/background buoyancy and a buoyancy anomaly as b = b0 + b1. We
consider stable linear stratifications for the background buoyancy, written in terms of the
buoyancy frequency as ∇b0 = −N2eg. In terms of the buoyancy and pressure anomalies,
the governing equations are then

∇ · u = 0 (4.1)

∂u
∂t
+ u · ∇u = −∇p1 + ν∇

2u − b1eg (4.2)

∂b1

∂t
+ u · ∇b1 = N2u · eg + κ∇2b1 (4.3)

We consider a semi-infinite fluid domain with a fixed and flat boundary on one side.
The boundary may be tilted with respect to the vertical by an angle θ, which is taken to be
positive for an overhanging tilt. We define a wall-aligned coordinate system, where x is the
wall-normal coordinate, with x = 0 located at the wall, y extending horizontally across the
wall, and z extending up the wall (Fig. 4.1). Then we have eg = sin θ ex − cos θ ez and the
component-wise equations become

∂u
∂x
+
∂v

∂y
+
∂w

∂z
= 0 (4.4)

∂u
∂t
+ u · ∇u = −

∂p1

∂x
+ ν∇2u − sin θ b1 (4.5)

∂v

∂t
+ u · ∇v = −

∂p1

∂y
+ ν∇2v (4.6)

82

Wall

Fluid

N2 > 0

b1 = B

x

z

θ

Far
Field

b1 = 0

Figure 4.1: We consider a linearly stratified fluid bounded by a tilted wall with an applied
buoyancy perturbation. The laminar solution is solved assuming a semi-infinite domain.
The simulations are performed in a confined domain with a wall in the far field.

∂w

∂t
+ u · ∇w = −

∂p1

∂z
+ ν∇2w + cos θ b1 (4.7)

∂b1

∂t
+ u · ∇b1 = N2(sin θ u − cos θ w) + κ∇2b1 (4.8)

The buoyancy anomaly is held to a fixed value B at the sidewall, and no slip of the
velocity is allowed at the wall:

b1(x = 0) = B (4.9)

u(x = 0) = 0 (4.10)

When B > 0, the buoyancy forcing from the wall drives a flow up along the wall. Depending
on the forcingmagnitude, thismay be a steady laminar flow, or a turbulent plume. By picking
the buoyancy forcing to be fixed relative to the background buoyancy, the equations become
homogeneous in y and z, and admit solutions that are periodic in these directions, which we
will consider in the remainder of this work.

4.2.2 Reynolds decomposition

The turbulent solutions are found to reach statistically steady states which depend only on
the distance from the wall, motivating a Reynolds decomposition of the equations based
on averaging over y and z. We denote such an average with an overbar, and decompose
each field into its average and a perturbation as f = f̄ + f ′. Applying this average to the

83

governing equations and assuming periodicity in y and z yields

∂ū
∂x
= 0 (4.11)

∂ū
∂t
+
∂uu
∂x
= −

∂p̄1

∂x
+ ν

∂2ū
∂x2 − sin θ b̄1 (4.12)

∂v̄

∂t
+
∂uv
∂x
= ν

∂2v̄

∂x2 (4.13)

∂w̄

∂t
+
∂uw
∂x
= ν

∂2w̄

∂x2 + cos θ b̄1 (4.14)

∂b̄1

∂t
+
∂ub1

∂x
= N2(sin θ ū − cos θ w̄) + κ

∂2b̄1

∂x2 (4.15)

The divergence constraint can be integrated with the velocity boundary condition to give
ū = 0.

In statistical equilibrium (i.e. assuming time-independence of the mean quantities), the
equations then become

∂

∂x

(
u′u′ + p̄1

)
= − sin θ b̄1 (4.16)

∂

∂x

(
u′v′ − ν

∂v̄

∂x

)
= 0 (4.17)

∂

∂x

(
u′w′ − ν

∂w̄

∂x

)
= cos θ b̄1 (4.18)

∂

∂x

(
u′b′1 − κ

∂b̄1

∂x

)
= −N2 cos θ w̄ (4.19)

In statistical equilibrium, we see that the divergence of the vertical wall-normal momentum
transport is balanced by the mean buoyancy, and the divergence of the wall-normal buoyancy
transport is balanced by production from the mean flow moving against the background
buoyancy gradient.

4.3 Laminar solution and linear stability

The equations admit a steady 1D solution depending only on x which is stable for low values
of the sidewall forcing. Such a solution satisfies the steady Reynolds-averaged equations,
with the Reynolds transport terms dropped. We denote the components of the steady 1D
laminar solution with a tilde, i.e. f̃ = f̄lam:

∂p̃1

∂x
= − sin θ b̃1 (4.20)

84

ν
∂2ṽ

∂x2 = 0 (4.21)

ν
∂2w̃

∂x2 = − cos θ b̃1 (4.22)

κ
∂2b̃1

∂x2 = N2 cos θ w̃ (4.23)

The first equation can be integrated to give the wall-normal hydrostatic balance. The second
equation yields ṽ = 0, assuming ṽ(x → ∞) = 0. The third and fourth equations can be
combined to give

w̃ =
κ

N2 cos θ
∂2b̃1

∂x2 (4.24)

∂4b̃1

∂x4 +
N2 cos2 θ

κν
b̃1 = 0 (4.25)

Defining the laminar boundary layer scale ` as

`4 =
4νκ

N2 cos2 θ
(4.26)

and letting η = x/`, the laminar solution (with decay in the far field) is found to be

b̃1 = Be−η cos(η) (4.27)

w̃ =
B
N

(κ
ν

)1/2
e−η sin(η) = We−η sin(η) (4.28)

The solution consists of out-of-phase, decaying oscillations in mean buoyancy and up-wall
velocity. The total up-wall volume and buoyancy fluxes (per unit length in y) of this solution
are ∫ ∞

0
w̃dx =

`

2
B
N

(κ
ν

)1/2
(4.29)∫ ∞

0
b̃1w̃dx =

`

8
B2

N

(κ
ν

)1/2
(4.30)

and the total buoyancy flux out of the wall is

F = −κ
∂b
∂x
(x = 0) (4.31)

= −κ
∂(b0 + b̃1)

∂x
(x = 0) (4.32)

= κ
(
N2 sin θ + B/`

)
(4.33)

The laminar flow has a characteristic lengthscale ` and timescale W−1`. These can be

85

used to non-dimensionalize the equations, resulting in the constants being expressed as

ν →
ν

W`
=

1
Re`

(4.34)

κ →
κ

W`
=

1
PrRe`

(4.35)

N2 →
N2`2

W2 =
4

cos2 θ

1
PrRe2

`

(4.36)

B2 →
B2`2

W4 =
4

cos2 θ

1
Re2

`

(4.37)

where the Prandtl and laminar-solution Reynolds numbers are given by

Pr =
ν

κ
(4.38)

Re` =
W`

ν
=

(
4

cos2 θ

B4

N6νκ

κ4

ν4

)1/4

(4.39)

In the turbulent regime, we expect fluid parcels with buoyancy anomalies on the order
of B to convect and travel on the potential-rise scale L = B

N2 over a timescale N−1. Non-
dimensionalizing with respect to these scales results in the constants being expressed as

ν →
ν

N L2 =
1

ReL
(4.40)

κ →
κ

N L2 =
1

PrReL
(4.41)

N → 1 (4.42)

B→ 1 (4.43)

where the rise-scale Reynolds number is given by

ReL =
N L2

ν
=

B2

N3ν
(4.44)

We generally choose to non-dimensionalize the forcing using the rise-scale Rayleigh
number, given by

RaL =
BL3

νκ
=

B4

N6νκ
=

4
cos2 θ

(
L
`

)4
(4.45)

86

which is related to the two Reynolds numbers by

RaL = Re2
LPr =

cos2 θ

4
Re4

`Pr4 (4.46)

The equations governing perturbations about the steady laminar solution are

∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0 (4.47)

∂u′

∂t
+ u′ · ∇u′ + w̃

∂u′

∂z
= −

∂p′1
∂x
+ ν∇2u′ − sin θ b′1 (4.48)

∂v′

∂t
+ u′ · ∇v′ + w̃

∂v′

∂z
= −

∂p′1
∂y
+ ν∇2v′ (4.49)

∂w′

∂t
+ u′

∂w̃

∂x
+ u′ · ∇w′ + w̃

∂w′

∂z
= −

∂p′1
∂z
+ ν∇2w′ + cos θ b′1 (4.50)

∂b′1
∂t
+ u′

∂b̃1

∂x
+ u′ · ∇b′1 + w̃

∂b′

∂z
= N2(sin θ u′ − cos θ w′) + κ∇2b′1 (4.51)

The linear stability of the background flow can be examined by dropping the terms that are
nonlinear in perturbative quantities, substituting the form

f ′(x, y, z, t) → f ′(x)ei(kyy+kz z−ωt) (4.52)

for each perturbative quantity, and solving the resulting one-dimensional eigenvalue problem
forω and each f ′(x). The linear stability of this solutionwith θ = 0 and ky = 0was examined
in this manner by Gill over a wide range of Prandtl numbers. They found that at a given
Prandtl number, the flow is linearly stable up to a critical Reynolds number, at which point
a linear convective instability sets in.

By analyzing the energetics during the linear growth phase, Gill was able to classify
unstable modes as being primarily mechanically driven, if the perturbation derives most
of its energy from the mean flow, or buoyantly driven, if the perturbation derives most of
its energy from buoyancy forces. They find that for Pr . 0.72, the most-unstable mode is
mechanically driven, while for Pr & 0.72 it is buoyantly driven. We note that due to the
stratification, the symmetry between y and z is broken, meaning that Squire’s theorem does
not apply to this flow, however only perturbations with ky = 0 were considered by Gill.

Fig. 4.2 plots the growth rate =(ωN) of the most unstable mode as function of RaL and
Lkz for Pr = 1, θ = 0, and ky = 0. The growth rates were computed using the eigenvalue
problem and dense solver in Dedalus. For these parameters, perturbations at all scales are
stable until RaL ≈ 107. The figure also indicates the local maxima in the growth rates as

87

6 7 8 9 10 11 12

log10RaL

25

50

75

100

125

150

175

200

Lk
z

-5
.0

00

-4
.5

00

-4
.0

00

-3
.50

0

-3.000

-2
.5

00

-2
.0

00

-1
.5

00

-1
.0

00

-0
.5

00
0.000

0.500

1.000
1.

50
0

2.
00

0

2.
50

0
3.

00
0

3.
50

0

4.000

4.
50

0
5.

00
0

5.500
6.000

6.500

7.000

7.500

8.000
8.500

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

(
N

)

Figure 4.2: Maximum growth rate of perturbations to the laminar solution as a function
of Rayleigh number RaL and up-wall wavenumber kz for Pr = 1, θ = 0, and ky = 0. Dots
indicate the local maxima in the growth rate as a function of kz for each RaL .

a function of kz for each Rayleigh number. Two branches of maximally unstable modes
are present at intermediate Rayleigh numbers – the lower and upper branches consist of the
buoyantly and mechanically driven modes described by Gill, respectively. At high Rayleigh
numbers, a broad range of modes are mechanically unstable.

4.4 Simulations of unsteady solutions

4.4.1 Computational setup

To examine the solution beyond the linear instability threshold, we directly simulated the full
nonlinear equations using the initial value problem and solver in Dedalus. We performed a
range of simulations at varying Rayleigh numbers, Prandtl numbers, and overhang angles.
The simulations were done in two dimensions (x and z) for computational efficiency. Rather
than simulating a semi-infinite fluid, the computational domain was taken to be a vertically
periodic channel, with a Fourier discretization in the z direction and a Chebyshev discretiza-
tion in the x direction. The buoyancy perturbation was applied to the left boundary at x = 0,
while the buoyancy perturbation was fixed to zero at the right boundary at x = Lx . Both
boundaries were taken to be no-slip surfaces.

To prevent the presence of the outer boundary from influencing the flow near the forced

88

boundary, we expect that the domain width should be larger than the potential rise scale,
Lx & L. Simulations were typically performed with Lx = 2L, and tests were undertaken
at various parameter values to check the independence of the flow statistics on the domain
width. For the high Rayleigh numbers, the domain width was decreased to L or 0.5L

to help ameliorate the increase in resolution needed to resolve turbulence near the forced
boundary. In all cases, the simulations were visually inspected to verify that the domain was
sufficiently wide that eddies shedding from the convective boundary layer near the forced
boundary dissipated before reaching the outer boundary.

The Dirichlet preconditioned option in Dedalus was used, resulting in fully banded
matrices representing the linear portion of the equations. Incompressibility is maintained
by simultaneously solving the momentum and mass conservation equations for the velocity
components and the pressure. The equations were then integrated with the RK222 timestep-
per, a two-stage second-order mixed implicit-explicit Runge-Kutta integrator. The timestep
was determined by the CFL condition set by the advection time across the computational
grid. The simulations were started from rest, with small random perturbations in the buoy-
ancy anomaly field b1. The buoyancy forcing at the wall was initially zero, and turned on
as

b1(x = 0, t) = B tanh(t/τ) (4.53)

where the timescale was typically taken to be τ = 10N−1. This gradual application of
the boundary forcing was found to reduce the resolution needed to integrate through the
transient turbulent bursts which occur before a steady state is reached at high Rayleigh
number. Simulations were typically ran for several hundred buoyancy periods until a
statistically steady state was reached. The built-in analysis tools in Dedalus were used to
save snapshots, profiles, and scalar statistics from the flow during the integration.

4.4.2 Simulation results

Two primary sets of simulations were performed to study the statistics of the turbulent steady
states. In the first, we fixed θ = 0 and performed simulations covering 103 ≤ RaL ≤ 1013

and 0.1 ≤ Pr ≤ 10. In the second, we fixed RaL and Pr and varied the angle of the wall
between 0◦ ≤ θ ≤ 30◦.

The primary statistic of interest is the mean buoyancy flux out of the wall in the
statistically steady state. This quantity is non-dimensionalized by dividing by the heat flux
from the laminar flow for equivalent parameters, producing the non-dimensional Nusselt

89

4 6 8 10 12
log10 RaL

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

lo
g 1

0N
u

Pr = 0.1
Pr = 1
Pr = 10

Figure 4.3: Nusselt number as a function of Rayleigh number and Prandtl number with
θ = 0. From left to right, the solutions transition from the steady laminar solution with
Nu = 1, to traveling nonlinear wave solutions with varying buoyancy flux behavior, to
turbulent plume solutions with power-law relations between Nu and RaL . The vertical bars
through each point indicate the variance of the buoyancy flux in the saturated state. The
dashed lines represent power-law fits to the high ReL simulations.

number:

Nu =
−κ〈∂x(b0 + b̄1)〉

−κ(∂x(b0 + b̃1))
(x = 0) (4.54)

=
N2 sin θ − 〈∂x b̄1〉(x = 0)

N2 sin θ + B/`
(4.55)

where the brackets indicate a temporal average over the statistically steady state. With high
Rayleigh numbers and angles away from the horizontal, the terms from the background are
negligible in comparison to the anomaly terms.

Fig. 4.3 shows the computed Nusselt number as a function of Rayleigh number for
Pr ∈ {0.1, 1, 10} with θ = 0. At low Rayleigh numbers, the simulations attain the laminar
solution, resulting a baseline Nusselt number of one. As the Rayleigh number is increased,
the simulations surpass the linear stability threshold and enter a nonlinear wave regime. As
the Rayleigh number is increased further, these nonlinear wave solutions become unstable
and a turbulent flow develops, resulting in apparent power-law increases in the Nusselt
number.

Fig. 4.4 shows the computed Nusselt number as a function of wall angle for Pr = 10
and RaL = 1011. As the wall is tilted away from the vertical, the Nusselt number decreases,

90

0 5 10 15 20 25 30
[deg]

1.44

1.46

1.48

1.50

1.52

1.54

1.56

Nu

Figure 4.4: Nusselt number as a function ofwall overhang angle forPr = 10 andRaL = 1011.
The vertical bars through each point indicate the variance of the Nusselt number in the
saturated state.

but does not appear to follow a simple power law in cos θ.

4.5 Discussion

4.5.1 Nonlinear wave regime

When the linear stability threshold is slightly exceeded, the linear instability saturates into
traveling nonlinear wave solutions moving up the wall. In this regime, the measured Nusselt
number is marginally sensitive to the along-wall domain size Lz , since the periodicity of the
domain in the z direction prevents the emergence of what would be the solution in a infinite
domain when Lz is not an exact multiple of that solution’s wavelength. In this regime, we
typically performed simulations with Lz = 4 to capture O(10) wavelengths of the saturated
solutions in an attempt to minimize this frustration, but extensive tests on the impact of Lz

on the measured Nusselt number were not performed.
This weakly nonlinear regimewas investigated for Pr ∈ {0.1, 1, 10}. For Pr = 10, where

the initial instabilities are primarily buoyantly-driven, the Nusselt number monotonically
increases with the Rayleigh number in the nonlinear wave regime 107 . RaL . 1010. For
Pr = 1, the Nusselt number first increases with Rayleigh number above the stability threshold
near RaL ∼ 107, then briefly decreases near RaL ∼ 108.5 which, from the linear stability
theory, we suppose to correspond to the transition from a buoyantly-driven instability to a
mechanically-driven instability. Fig. 4.5 shows a snapshot of the traveling nonlinear wave

91

Figure 4.5: Zoom-in snapshots of the traveling nonlinear wave solution for Pr = 1,
RaL = 108, and θ = 0. The simulation quantities are non-dimensionalized using the
lengthscale L and timescale N−1.

92

solution for Pr = 1,RaL = 108, and θ = 0. ForPr = 0.1, theNusselt number decreases below
unity as the Rayleigh number is increased past the stability threshold near RaL ∼ 3 × 103.
The Nusselt number attains a minimum of Nu ≈ 0.85 near RaL ∼ 107.

The tendency of the Nusselt number in the nonlinear wave regime thus appears to
correspond to the energetic nature of the linear instability at the corresponding parameters,
with buoyantly-driven instabilities at high Prandtl number increasing the total buoyancy flux
from the wall, and mechanically-driven instabilities at low Prandtl number decreasing this
flux.

4.5.2 Turbulent regime

As the Rayleigh number is increased, the nonlinear wave solutions become unsteady and
begins to shed vortices into the interior of the domain. As the Rayleigh number is further
increased, a well-developed turbulent plume forms along the forced wall as vortices rapidly
and repeatedly shed from the boundary layer. To help visualize the evolution of the turbulent
plume, the evolution of a passive tracer was integrated alongside the dynamical equations.
The tracer field evolved with the same diffusivity and boundary conditions as the buoyancy,
but with no background gradient, specifically

∂c
∂t
+ u · ∇c = κ∇2c (4.56)

c(x = 0) = B (4.57)

The tracer field is thus an effective tool for determining the extent to which fluid parcels in
diffusive contact with the forced wall spread throughout the domain.

Fig. 4.6 shows snapshots of the buoyancy anomaly and tracer field in the turbulent
state with RaL = 1010, Pr = 1, and θ = 0. The turbulent plume, as visualized through
the tracer field, is found to remain confined against the wall with a width . L in all of
our simulations. As vortices shed from the turbulent boundary layer, they reach a level of
neutral buoyancy, and begin to spread laterally into the interior of the domain, as evidenced
by the horizontal filaments in the tracer field extending from the turbulence plume. These
vortices additionally excite internal waves which fill the interior domain and are visible in
the buoyancy anomaly field. Simulations were performed with different domain widths
to ensure the reflection of these internal waves off the far boundary were not substantially
influencing the saturated state of the plume.

Fig. 4.7 shows a space-time diagram of the buoyancy flux from the forcedwall. Vortices
running up the wall are clearly visible as the inclined streaks in the buoyancy flux. The
temporal average of the heat flux shows that it is statistically homogeneous along the wall.

93

Figure 4.6: Buoyancy anomaly and tracer field in the turbulent state for RaL = 1010, Pr = 1,
and θ = 0. The left two panels show the entire computational domain, while the right two
panels zoom in to show the structure of the vortices shedding from the boundary layer. The
simulation quantities are non-dimensionalized using the lengthscale L and timescale N−1.

The spatial average of the heat flux shows that it is statistically steady in time with an
apparent variance, but no secular evolution. The temporal and along-wall homogeneity of
all simulations in the turbulent state motivates the use of the z and t averaged statistics in
characterizing the flow. The temporal average and variance of the wall-averaged buoyancy
flux, with the temporal average being taken over the last 25%of the simulation time (typically
100− 200N−1), is used to determine the simulations mean Nusselt number and its variance.

For each Prandtl number, the Nusselt number appears to scale as a power-law function
of the Rayleigh number. For θ = 0, simulations with ReL ≥ 104.75 were used to find the
best-fit power law parameters, which are listed in Table 4.1.

Pr α β

10−1.0 0.501 ± 0.006 34.6 ± 3.2
10−0.5 0.515 ± 0.003 28.5 ± 1.2
100.0 0.355 ± 0.007 18.7 ± 0.3
100.5 0.281 ± 0.003 15.6 ± 0.5
101.0 0.308 ± 0.004 15.8 ± 0.7

Table 4.1: Best-fit parameters for power-law fit to the Nusselt number as a function of the
Rayleigh number in the form Nu = αRa1/β

L , with θ = 0 and ReL ≥ 104.75.

94

Figure 4.7: Buoyancy flux out of the forced wall as a function of distance along the wall
and time in the turbulent state for RaL = 1010, Pr = 1, and θ = 0. The right panel shows the
temporal average of the wall buoyancy flux as a function of z. The bottom panel shows the
spatial average of the wall buoyancy flux as a function of t. The simulation quantities are
non-dimensionalized using the lengthscale L and timescale N−1.

95

4.5.3 Analogy to a melting boundary

This simplified model may be viewed as a limit of the problem of the flow near an interface
between ice and fresh water. With no salinity, the melting boundary conditions reduce to

cκ∂xT(x = 0) ≈ LU (4.58)

T(x = 0) ≈ Tm − λd (4.59)

where c is the specific heat capacity of water, L is the latent heat of melting, U is the
melting velocity of the ice interface, Tm is the reference freezing point, λ is the freezing
point depth dependence, and d is the depth from the surface. Here we have neglected the
thermal flux into the ice and linearized the liquidus relation. Converting the temperature
into the buoyancy anomaly relative to an ambient linear temperature profile

Ta ≈ T0 −
N2

αg
d (4.60)

and noting that α < 0 for freshwater near the freezing point gives

cκ
αg

∂xb(x = 0) = LU (4.61)

b(x = 0) = B = αg(Ti − Ta) (4.62)

= αg(Tm − λd − T0 +
N2

αg
d) (4.63)

= |α |g(T0 − Tm) + (N2 + |α |gλ)d (4.64)

Although the buoyancy anomaly changes with depth, we may use the idealized solution
as an approximate local model at a particular depth on scales ∼ L. The importance of the
meltwater flux from the wall can be determined by comparing it to the velocity scale of the
laminar solution. Taking B ≈ |α |g(T0 − Tm), θ = 0 and dropping λ gives

U
W
= −

cκ
αgL

NuB
`W

(4.65)

≈
T0 − Tm

L/c
Nu

PrRe`
(4.66)

≈ 10−3 Nu
Re`

(
T0 − Tm

K

)
(4.67)

where L/c ≈ 83 K and Pr ≈ 13 for fresh water at low temperatures. Since the Nusselt

96

number is sublinear in the Reynolds number in the turbulent regime, the meltwater flux is
expected to be negligible to the dynamics of the flow.

The expected Rayleigh number for the flow is

RaL =
B4

N6νκ
(4.68)

≈
α4g4(T0 − Tm)

4

(αg∂zTa)
3νκ

(4.69)

≈
|α |g Km3

νκ

(
T0 − Tm

K

)4 (
−∂zTa

K/m

)−3
(4.70)

≈ 2 × 109
(
T0 − Tm

K

)4 (
−∂zTa

K/m

)−3
(4.71)

with α ≈ −5 × 10−5 1/K, g = 9.8 m/s2, ν ≈ 1.8 × 10−6 m2/s, and Pr ≈ 13 for fresh water
near the freezing point. Taking the power-law scaling from the simulations with Pr = 10 as
Nu ≈ 0.3Ra1/16

L , the boundary layer and melt rate velocities are found to be

W =
1

Pr1/2
B
N

(4.72)

≈

(
|α |g Km

Pr

)1/2 (
T0 − Tm

K

) (
−∂zTa

K/m

)−1/2
(4.73)

≈ 6 × 10−3 m/s
(
T0 − Tm

K

) (
−∂zTa

K/m

)−1/2
(4.74)

U =
K

L/c

(
T0 − Tm

K

)
WNu
PrRe`

(4.75)

≈ 9 m/yr
(
T0 − Tm

K

)5/4 (
−∂zTa

K/m

)1/16
(4.76)

A laboratory-scale melting experiment with T0 −Tm ≈ 1 K and ∂zTa ≈ −1 K/m is therefore
expected to be just moderately turbulent with RaL ≈ 109. A geophysical-scale problem
with T0 −Tm ≈ 3 K and ∂zTa ≈ −10−2 K/m, however, is expected to be fully turbulent with
RaL ≈ 1017, Nu ≈ 3.5, and U ≈ 25 m/yr.

Perhaps more importantly than the thermodynamic simplifications, this model also

97

neglects surface roughness above the scale

` =
B

N2

(
RaL

4

)−1/4
(4.77)

≈ 7 × 10−3 m
(
−∂zTa

K/m

)−1/4
(4.78)

which is sure to occur in any geophysical setting. However, it may still be useful as a
first-order model when considering the dynamics of melt-driven flows.

4.6 Conclusion

We have used direct numerical simulations to examine the statistics of a convective plume
driven by a lateral boundary providing a constant buoyancy anomaly to a linearly stratified
fluid. At low Rayleigh number, a steady 1D laminar flow forms along the forced boundary.
As the Rayleigh number is increased, this flow becomes linearly unstable, and eventually
saturates into a turbulent plume confined along the forced boundary. The Nusselt number,
describing the ratio of the mean buoyancy flux from the wall in the turbulent and laminar
states, is found to have a power-law dependence on the Rayleigh number, with the scaling
exponent depending on Prandtl number. For Prandtl numbers characteristic of water, the
buoyancy flux is found to scale as approximately the 5/4-th power of the imposed buoyancy
anomaly. The model may be applicable as a simplified local model of the flow formed along
ice melting into fresh water.

This model provides a very simple landscape for investigating turbulent heat transfer
from lateral boundaries in stratified fluids, and many aspects of the model deserve additional
investigation. First, it would be interesting to complete Gill’s investigation of the linear
stability of the laminar flow by examining cases when θ , 0. In particular, the behavior may
abruptly change as θ becomes negative, and the buoyancy encourages the boundary layer to
separate away from the boundary rather than pushing into it. The linear theory for ky , 0
should also be investigated, as Squire’s theorem does not apply to the flow. The turbulent
solutions should also be examined in 3D to determine the impact of including the cross-wall
dimension on the flow.

An advantage of performing direct numerical simulations rather than laboratory ex-
periments or large-eddy simulations is that the computed solutions contain the full details
of the turbulent flow. In particular, the simulation output can be averaged to determine the
statistically-steady Reynolds stresses and transports as a function of distance from the wall.
The balances in the Reynolds-averaged equations can then be directly examined, potentially
aiding in the development of theories for the Nusselt-Rayleigh scaling exponents, which we

98

leave to future work.

99

100

Part III

Nonlinear Tidal Instabilities

101

Chapter 5

Introduction to astrophysical tides

5.1 The influence of tides of binary systems

To a first approximation, the orbits of gravitationally bound stars and planets can be described
by treating these bodies as point particles. For isolated binary systems with velocities
that are small compared to the speed of light, this treatment yields classical Keplerian
orbital dynamics, with the particular feature that the orbital parameters (semi-major axis,
eccentricity, etc.) remain fixed in time. The gravitational field experienced by each body,
however, is variable in space, leading to a differential gravitational force across the finite
extent of each body, inducing a tidal deformation stretching the body in the direction of its
companion (Fig. 5.1). The order of magnitude of the tide is characterized by the ratio of the
differential gravitational pull across the radius of the body to its own gravity, as

ε =

GM2
a3 R1
GM1
R2

1

=
M2

M1

(
R1

a

)3
(5.1)

This tidal bulge breaks the spherical symmetry of the body, causing deviations from
the Keplerian orbit. In particular, if the orbit is eccentric or one of the bodies is rotating
asynchronously to the orbit, then the tidal bulge will be pulled slightly alongwith the rotation
of the planet. In the frame of the asynchronous body, the tidal potential will be non-stationary
and induce a nonuniform flow within the body. The associated dissipation from this flow
drains energy from the orbit, causing the orbit to evolve towards a synchronized circular
orbit. For example, the fast rotation of the earth compared to the moon’s orbit causes the
time-dependence of earth’s tide, and the resulting dissipation is slowing the earth’s rotation
by ∼ 20 µs per year while expanding the moons orbit by ∼ 4 cm per year.

In addition to their impact on the orbital dynamics of a system, tidal dissipation both
reflects and affects the internal structure of stars and planets. Tidal dissipation removes
energy from the orbit and deposits it as heat within tidally deformed bodies, potentially with
a substantial impact in some systems including hot Jupiters. The exact response of a body

103

ω

a

Ω

1 2

Figure 5.1: Schematic of a tidally-deformed body in a binary orbit. If the deformed body’s
rotation frequency ω is slower (faster) than the orbital frequency Ω, tidal dissipation will
shrink (expand) the orbit.

to the tidal potential, and hence the magnitude of tidal dissipation, however, depends on
the internal structure of that body. This fact raises the possibility of probing the interior
structure of stars and planets via the tidally induced evolution of the orbits of those bodies.

5.2 Estimating tidal dissipation rates

In the limit of ε → 0, the structure of the tidal distortion of a body can be calculated using
linear theory. For a slowly-rotating fluid body, the tidal response can be well-approximated
by its expansion over the normal modes of the body, including pressure-support global sound
waves (p-modes) and buoyancy-supported global internal waves (g-modes). The amplitudes
of these modes satisfy the equations of damped-driven harmonic oscillators with nonlinear
couplings. In the linear regime, the tidal response is simply computed from these amplitude
equations, and depends on the spatial overlap of the modes with the tidal potential and the
natural frequency of the modes.

The associated dissipation ÛE due to the effective viscosity in turbulent/convective
regions as well as radiation diffusion acting on the tidal perturbation can be then calculated.
This dissipation is formally O(ε2), and is commonly non-dimensionalized using the linear
tide’s energy and tidal frequency ωT as Q ∼ ÛE/(ωT E). For solar-type stars, estimates from
linear theory give Q ∼ 108 (Ogilvie, 2014). Measuring the tidal evolution of individual
systems is exceedingly challenging, but the study of Meibom et al. (2005) examined the

104

circularization period as a function of age in collections of short-period solar-type binaries.
Thismeasurement implies dissipation rates substantially larger than those predicted by linear
theory, consistent with Q ∼ 106.

This and other results raise the possibility that nonlinear effects may be important in
determining tidal dissipation in close binaries. As the amplitude of the tide is increased,
instabilities due to nonlinear coupling of waves inside the deformed star or planet may lead
to substantially enhanced dissipation if these unstable waves grow to large amplitudes and
break. Recent studies have used stellar structure models to compute the normal modes,
coupling coefficients, and stability thresholds for parametric instabilities of two g-modes in
solar-type stars (Barker et al., 2011; Weinberg et al., 2012) and non-parametric instabilities
due to the coupling of p-modes and g-modes in neutron stars (Venumadhav et al., 2014;
Weinberg, 2016; Weinberg et al., 2013). Other studies have built on these calculations using
oscillator networks and parameterized models to estimate the resulting saturated states and
the corresponding nonlinear tidal dissipation (Essick et al., 2016a,b). However, uncertainties
about the saturated statistics remain due to the complicated nature of these instabilities and
many regimes remain to be explored.

5.3 Probing neutron star interiors

Understanding the nonlinear stability of tides in neutron stars has been made particularly
timely by the recent and ongoing gravitational wave observations of neutron star binaries by
LIGO. Neutron stars form a rich laboratory for studying physics under extreme conditions
with strong gravity, strong magnetic fields, and rapid rotation. A major open problem is
determining the composition and behavior of matter at the densities occurring in the deep
interior of neutron stars (NS, hereafter). These regions are partially supported by neutron
degeneracy pressure, but unlike in electron-denegeracy-supportedwhite-dwarfs, the relevant
densities are such that the inter-particle spacing is comparable to the neutron radius and the
scale of the strong nuclear force. Interactions between the particles are therefore significant,
and simple neutron degeneracy pressure does not describe the equation of state of such
material.

A wide variety of theoretical models for the equation of state of such matter have
been proposed, and gravitational wave observations of neutron star binaries may provide a
way to test these models. When a NS is in a close binary with another NS or black hole,
the gravitational waves emitted by the system begin to drain significant energy from the
orbit of the binary. As this energy is carried away by gravitational waves, the orbit shrinks
and the amplitude of the gravitational waves increases. This process runs away, eventually
resulting in the merger of the objects as the orbit shrinks below their physical sizes. The

105

gravitational wave signature of one NS-NS merger was recently observed by the LIGO and
VIRGO collaboration (Abbott et al., 2017) (Fig. 5.2).

Tidal dissipation also removes energy from the orbit and may introduce a measurable
phase shift into the gravitational wave signature of the binary if it becomes sufficiently large
relative to the gravitational wave emission. Dissipation from the linear tide is likely too
small to be seen in all but the highest signal-to-noise events (Agathos et al., 2015; Damour
et al., 2012; Hinderer et al., 2016; Lackey et al., 2015; Read et al., 2009). However, if the
tide becomes nonlinearly unstable during the inspiral, the resulting dissipation may reach
observable levels. The emergence of tidal instabilities critically depends on the coupling
between the normal modes of the NS, which in turn depend on the background density
structure and equation of state of the interior.

Determining the tidal dissipation due to nonlinear instabilities is beyond the reach of
perturbative calculations, but Essick et al. (2016a) approached the problem by developing a
coarse parameterization of the saturation of unstable collections of coupled modes. Their
results indicate that with plausible values for the p-g instability bandwidth, growth rates,
and thresholds, tidal dissipation might significantly impact LIGO observations and bias
estimates of the observed system masses and distances inferred from templates neglecting
these effects. They conclude that first-principles calculations of tidal instabilities with
different neutron star models to confirm the growth rates and bandwidths from perturbation
theory, and possibly determine their saturation, could significantly reduce the degeneracies
in inferring binary-NS system parameters from LIGO waveforms and may help place useful
constraints on the neutron-star equation of state.

106

Figure 5.2: Gravitational wave signatures of a binary neutron-star inspiral as observed by
the LIGO and VIRGO detectors. Figure adapted from Abbott et al. (2017).

107

108

Chapter 6

Direct simulations of tidal stability thresholds

This work was supervised by Nevin Weinberg.

6.1 Introduction

Understanding the rate at which orbital energy is dissipated by tidal processes remains an
important open question in our understanding of the orbital dynamics and interior structure
of stars, compact objects, and planets in close binaries (Ogilvie, 2014). Most investigations
of tidal dissipation have considered the linear damping of the leading-order tidal response by
viscosity and thermal diffusion. However, observations of solar binaries indicate that tidal
dissipation can exceed the predictions from this linear theory by several orders of magnitude
(Meibom et al., 2005).

Recent work has begun examining the role of nonlinear effects in determining the rate
at which energy is dissipated in tidally forced systems. Barker et al. (2011) and Weinberg
et al. (2013) showed that as the amplitude of the tide is increased, instabilities due to the
nonlinear coupling of waves inside the star or planet may lead to substantially enhanced tidal
dissipation. (Essick et al., 2016b) applied this theory to examine the onset of the parametric
instability of g-modes in stars hosting hot Jupiters. (Essick et al., 2016a; Venumadhav et al.,
2014;Weinberg, 2016;Weinberg et al., 2013) have investigated the possibility of instabilities
due to coupled g-modes and p-modes in binary neutron stars, and the potential observability
of the resulting dissipation in the gravitational wave signatures of these systems. All of
these studies are based on complex calculations involving high-order perturbation theory
and integrations treating the fluid response as a connected network of stellar normal modes.
Determining the collective growth rate of many coupled modes, particularly in the case of
p-g coupling where the modes are far from resonance with tidal frequency, is a challenging
task due to the complex nature of the weakly nonlinear dynamics.

In this work, we consider an alternative approach, directly simulating the fully nonlinear
response of a fluid layer subjected to a tidal potential to computationally probe the onset
of tidal instabilities. We start with a highly simplified model examining the tidal stability

109

of a plane-parallel atmosphere. This model allows for the examination of the fundamental
physics of nonlinear mode coupling in a simple 2D geometry. Using Dedalus, we solve for
the background atmospheric structure, the eigenmodes of the atmosphere, the linear tidal
solution, and the nonlinear coupling coefficients between the linear tide and the eigenmodes.
We use these coefficients to predict the threshold amplitude for the nonlinear instability of
the tidal solution, and compare the results with fully nonlinear simulations.

6.2 Background structure

We begin by solving for the background structure of the atmosphere. For computational
simplicity, we specifically consider a thin section of a compressible atmosphere with rigid
bottom and top boundaries. While the rigid boundaries are unrealistic for fluid bodies, they
allow us to consider and simulate the flow simply from an Eulerian viewpoint. We define
a 2D coordinate system (x, z), where x is the horizontal coordinate, and z is the vertical
coordinate. We impose a constant downward gravitational acceleration g on the fluid, and
neglect the self-gravity of the atmosphere.

The background density profile ρ0(z) and pressure profile p0(z) must be in hydrostatic
equilibrium, satisfying

∂p0

∂z
= −ρ0g. (6.1)

We are interested in producing atmospheres with specific background buoyancy profiles,
given by

N2(z) = −g
(
∂zρ0

ρ0
−

1
Γ1

∂zp0

p0

)
(6.2)

where N is the buoyancy frequency and Γ1 is the first adiabatic exponent

Γ1 =
∂ ln p
∂ ln ρ

����
ad
. (6.3)

We therefore fix Γ1, g, and N2(z), and implicitly solve for the background entropy profile. The
above equations combine to produce a second-order equation for the background pressure
as

∂zzp0 =

(
1
Γ1

∂zp0

p0
−

N2(z)
g

)
∂zp0 (6.4)

which can be solved to determine the structure of the atmosphere given the basal boundary
conditions p0(z = 0) = pB

0 and ρ0(z = 0) = ρB0 . The system can be non-dimensionalized
using the basal pressure scale height, the basal mass scale, and the basal dynamic time as

110

characteristic length, mass, and time scales:

L̂ ≡ −
p0

∂zp0
(z = 0) =

pB
0

ρB0 g
(6.5)

M̂ ≡ ρB0 L̂3 (6.6)

T̂2 = L̂/g (6.7)

Choosing these scales is equivalent to taking pB
0 = 1, ρB0 = 1, and g = 1.

We solve the non-dimensionalized form of the above equation using the nonlinear
boundary-value solver inDedalus. A fast shootingmethod is used to compute an approximate
solution for the background pressure profile p0(z) from z = 0 up to a given height Lz . The
Dedalus solver then uses a symbolically-computed functional Jacobian to perform Newton
iterations of the Chebyshev expansion of p0. This method rapidly converges to machine
precision.

For our fiducial model, we consider an atmosphere with Γ1 = 5/3, Lz = 2 (correspond-
ing to approximately 4 pressure scale-heights), and a Gaussian buoyancy profile

N2(z) = N2
0 exp

(
−
(z − zc)2

2z2
w

)
(6.8)

with a baseline amplitude of N0 = 0.2, cavity center zc = 1, and cavity width zw = 0.2. We
choose a Gaussian profile for the buoyancy frequency to create a confined cavity for the g-
modes in the model, since the nonlinear coupling between modes may be strongest near their
turning points (Weinberg et al., 2013). The smooth nature of the imposed buoyancy profile
results in smooth background pressure and density profiles, with exponentially converging
Chebyshev expansions. This property is key to the accuracy and efficiency of the remaining
computations, as it allows us to represent the background atmospheric structure to high
precision with a limited number of Chebyshevmodes. For the fiducial model, approximately
50 Chebyshev modes are needed to resolve the background pressure to double precision
(roughly 15 digits).

6.3 Governing equations

We are interested in the nonlinear dynamics of flow driven by a tidal potential acting on the
background atmosphere. The governing equations are given by the Navier-Stokes equations
for the conservation of mass, momentum, and energy in the fluid:

∂ρ

∂t
+ u · ∇ρ + ρ∇ · u = 0 (6.9)

111

ρ

(
∂u
∂t
+ u · ∇u

)
+ ∇p = ρg − ρ∇φ + ∇ · τ (6.10)

ρT
(
∂s
∂t
+ u · ∇s

)
= τ : ∇u (6.11)

where φ is the tidal potential, and τ is the viscous stress tensor. Here we have neglected
thermal diffusion, as viscosity is expecting to be the primary dampingmechanism for neutron
star oscillations. We have again neglected the self-gravity of the atmosphere. The viscous
stress tensor, neglecting bulk viscosity, is given by

τ = µ

(
∇u + ∇uT −

2
3
(∇ · u)I

)
(6.12)

We take the plane-parallel layer to be horizontally periodic on a length Lx . We set the top
and bottom boundaries to be impenetrable and stress-free, to minimize the development of
boundary layers:

u · ez = 0 z = 0, Lz (6.13)

ex · τ · ez = 0 z = 0, Lz (6.14)

For simplicity, we neglect the entropy production due to viscosity, which is expected
to be small as it is second order in velocity amplitudes and proportional to the molecular
viscosity. We then have ds/dt ≈ 0 and rewrite the energy equation as a pressure equation

∂p
∂t
+ u · ∇p + Γ1p∇ · u = 0 (6.15)

It is additionally convenient to change variables from the mass density to the specific volume
α = 1/ρ to remove the density factor from the temporal derivatives in the momentum
equation, while maintaining a simple quadratic form for the nonlinearities. We split the
specific volume and pressure between the background and deviations as α = α0 + α1 and
p = p0 + p1. The velocity is divided into a constant horizontal shift and deviations as
u = u0 + u1 = (Uex)+ (uex +wez). With these substitutions, and cancelling the hydrostatic
terms (α0∇p0 = g), the equations become

∂u1

∂t
+U

∂u1

∂x
+ α0∇p1 + α1∇p0 − α0∇ · τ1 = −∇φ − u1 · ∇u1 − α1∇p1 + α1∇ · τ1 (6.16)

∂α1

∂t
+ w

∂α0

∂z
+U

∂α1

∂x
− α0∇ · u1 = −u1 · ∇α1 + α1∇ · u1 (6.17)

∂p1

∂t
+ w

∂p0

∂z
+U

∂p1

∂x
+ Γ1p0∇ · u1 = −u1 · ∇p1 − Γ1p1∇ · u1 (6.18)

w = 0 z = 0, Lz (6.19)

112

τ1,xz = 0 z = 0, Lz (6.20)

We have written the equations with all linear terms in the deviation variables on the left-
hand side, and all inhomogeneous and nonlinear terms on the right-hand side. Many analyses
of stellar oscillations proceed by converting this equations into Lagrangian equations for the
fluid parcel displacement field ξ. The Lagrangian approach has the advantage of allowing
one to follow the displacements of a free surface, but requires truncations in the evaluation
of terms at the displaced position of a fluid parcel, leading to a complicated hierarchy of
many terms depending on the expansion order under consideration. The Eulerian equations,
however, are an exact nonlinear system with only quadratic terms. In the remainder of this
paper, we will analyze the above system in the generalized system form considered by the
Dedalus framework:

M ·
∂X

∂t
+ L · X = F (X, t) = H(t) + G(X,X) (6.21)

HereM and L represent block-operators acting on the state vector X = (α1, p1, u,w), and
F (X) represent the nonlinear operators. We have further split F (X) into a homogeneous
part H(t) which represents the tidal forcing, and a bilinear part G(X,X) representing the
quadratic nonlinearities.

The equations are discretized in Dedalus using the direct product of a Fourier series in
the x direction and a Chebyshev series in the z direction. Since α0 and ρ0 are independent
of x, the linear portion of the equations is separable over the horizontal Fourier modes.
For each wavenumber k, we then have a coupled system for the Chebyshev expansion of
Xk(z) =

∫
e−ikxX(x, z)dx, which we denote by Xk . We write these Chebyshev discretized

systems as

Mk ∂Xk

∂t
+ LkXk = Fk(X, t) = Hk(t) + Gk(X, X) (6.22)

Here Mk and Lk are the discretized matrix forms of the corresponding operators, and Xk

is a column vector. We suppress the dot notation for matrix-matrix and matrix-vector
multiplication with the discretized objects.

6.4 Non-adiabatic eigenmodes

6.4.1 Forward modes

For a given wavenumber k, the temporal eigenmodes of the linear portion of the deviation
equations satisfy the generalized eigenvalue problem

σk,iMkXk,i + LkXk,i = 0 (6.23)

113

We solve this eigenvalue problem numerically using the eigenvalue solver in Dedalus. The
Dedalus solver implements both a sparse routine for quickly finding eigenmodes near a
target eigenvalue and a dense routine for finding all of the numerical eigenmodes at a given
resolution.

The eigenvectors Xk,i produced by the numerical solvers are normalized by their L2

vector norm, which is not a physically meaningful normalization. We renormalize each
eigenmode so that its nondimensional energy is unity, i.e.

E = 2
∫

ρ0u1 · u1dx (6.24)

Xk,i →

√
Ê

Ek,i
Xk,i (6.25)

where the leading factor of two in the energy comes from including the potential energy of
the mode, the velocities implicitly include both a mode and its complex conjugate, and the
energy scale is Ê = M̂ L̂2/T̂2.

Fig. 6.1 shows a subset of the eigenmodes from the dense solver for horizontalwavenum-
ber k = π, vertical resolution Nz = 128, and U = 0. The top panel shows the complex
mode frequencies iσ in the complex plane, or equivalently the growth rate γ vs. the wave
frequency ω under the identification σ = −i(ω + iγ). The left branch of modes with low
frequencies are g-modes, and the right branch with high frequencies are p-modes. The
well-resolved modes follow smooth power-laws with γ ∼ −|ω|±2 for p-modes and g-modes,
respectively. For |ω | . 5 × 10−3 and |ω | & 102, the eigenvalues depart from these relations
as the corresponding eigenmodes are underresolved by the numerical discretization. For a
Chebyshev resolution of Nz = 128 modes, there are roughly 30 well-resolved g-modes and
80 well-resolved p-modes. The structure of the 5th g-mode is plotted in the panels along
the bottom of the figure.

6.4.2 Dual modes

Weare interested in tracking the amplitudes of the eigenmodes in fully nonlinear simulations.
This requires a method for decomposing an arbitrary state of the simulation into a sum of
the linear eigenmodes. However, since we are directly including viscous dissipation, the
equations are not self-adjoint and hence the eigenmodes are not orthogonal under the energy
inner product. Performing an eigenmode decomposition therefore requires us to find a new
basis that is dual to our nonadiabatic eigenmodes under some inner product.

One option would be to derive the equations that are adjoint to our linear system
under the usual energy inner product. The eigenmodes of those equations would then be

114

10 5 10 4 10 3 10 2 10 1 100 101 102 103 104
100

10 1

10 2

10 3

10 4

10 5

10 6

10 7

0 2
z

0.5

0.0

0.5

u

0 2
z

0.1

0.0

0.1
w

0 2
z

0.002

0.000

0.002

p1

0 2
z

0.2

0.0

0.2

1

Figure 6.1: Top panel: Eigenmode frequencies in the complex plane for the fiducial model
atmosphere with µ = 10−8. The left branch are g-modes and the right branch are p-modes.
Departures at high and low frequencies from the power law trends indicate the end of the
well-resolved modes. Bottom: Real (solid) and imaginary (dashed) components of the 5th
g-mode.

115

orthogonal to the forward eigenmodes under the energy inner product. Computing each
eigenmode coefficient, however, would require evaluating this projection as an integral
operator. A more computationally efficient option is to use a basis that is dual under the
Chebyshev inner product, since the corresponding projection is simply the dot product
between the Chebyshev expansion of the dual mode and the Chebyshev expansion of the
given state.

The dual modes are derived by simply considering the left generalized eigenvectors of
the Chebyshev discretized system. Dropping the wavenumber for clarity, the forward (or
right) generalized eigenmodes again satisfy

σiM Xi + LXi = 0 (6.26)

The left generalized eigenvectors of the same system satify

γ∗iY
∗
i M + Y ∗i L = 0 (6.27)

which can be arranged to show that these modes are the right generalized eigenvectors of
the Hermitian-transposed system as

γiM†Yi + L†Yi = 0 (6.28)

For a particular wavenumber k, we solve for these dual modes in Dedalus simply by
replacing the Lk and Mk matrices in the eigenvalue solver with their Hermitian transposes.
The resulting left and right generalized eigenvectors then satisfy a modified orthogonality
relation

Y ∗j LXi = −σiY ∗j M Xi = −γ
∗
jY
∗
j M Xi (6.29)

=⇒ Y ∗j M Xi(σi − γ
∗
j) = 0 (6.30)

It is simple to show that for each right eigenmode with σi, there must be a corresponding
left eigenmode with γi = σ∗i . The orthogonality relation is therefore Y ∗j M Xi ∝ δi, j , and the
proportionality is made into an equation simply by renormalizing each Yj . The final metric
matrix given by Y ∗j M Xi∗ is found to be close to δi, j to within ∼ 10−10 to the identity for the
well-resolved spectrum. Numerical errors, related to large differences in the initial and final
scaling of the forward and dual modes, result in projection errors on the order of ∼ 10−6 for
the non-resolved modes. This numerical dual basis therefore presents a reliable means of
orthogonally projecting out the amplitude of the resolved eigenmodes in a given solution.

Finally, we note that due to the non-Hermitian nature of these operators, we are not
certain that the set of discrete eigenmodes forms a complete basis for the solutions. In

116

practice, however, we have found that we are able to reconstruct solutions to high accuracy
by decomposing them across a large set eigenmodes using the numerical dual basis, and
summing together the elements of this decomposition.

6.4.3 Modal equations

Again assuming completeness of the forward eigenmodes, we can write an arbitrary state of
the full simulation as

X =
∑
k,i

ak,i(t)Xk,i (6.31)

Substituting this form into the evolution equation (Eq. (6.22)), again suppressing the
wavenumber for simplicity, gives∑

i

dai
dt
(M Xi) + aiLXi = F(X, t) (6.32)

∑
i

(
dai
dt
− σiai

)
(M Xi) = F(X, t) (6.33)

Projecting against the derived dual basis produces the modal equations governing the evo-
lution of the eigenmode amplitudes:

dai
dt
− σiai = Y ∗i F(X, t) = fi(X, t) (6.34)

Given completeness of the eigenmodes and a perfect dual projection scheme, integrating
this set of equations would be equivalent to integrating the system for the Chebyshev
discretization. However, the evaluation of the nonlinear terms requires the construction of
the full solution X in grid space, which is accomplished using the FFT in the spectral method
takingO(Nz log Nz) time, but would have to be done with amatrix-multiply transform taking
O(N2

z) time using the eigenmode decomposition. Integrating the equations in the Chebyshev
spectral method is therefore faster and better conditioned than using the eigenmode basis,
but the latter is a useful analytical tool for understanding the evolution of the solution.

6.5 Linear tidal solution

For our fiducial model, we consider a traveling external tidal potential given in the stationary
frame of the atmosphere as

φS(x, z, t) = ε cos(kT x − ωT t) exp(kT (z − Lz)) (6.35)

117

This form is chosen as it is the simplest horizontally periodic and harmonic potential. Instead
of integrating the equations in the stationary frame, we boost to a frame moving with the
tide with U = −ωT/kT . The tidal potential in this “comoving” frame is time-independent
and given by

φC(x, z) = ε cos(kT x) exp(kT (z − Lz)) (6.36)

The linear tide is the solution of the equations recovered in the limit of a small amplitude
tide, i.e. H ∼ ε � 1. This leading order solution is found by dropping the nonlinear terms
G(X, X) and solving the resulting linear system, which is time-independent in the comoving
frame:

LkXk = Hk (6.37)

This system is directly solved using the linear boundary value solver in Dedalus to produce
the linear tidal solution. The mode amplitudes for the linear tide are simply given by

ak,i = −
hk,i
σ̃k,i

(6.38)

where the eigenvalues of the eigenmodes for a given wavelength k are shifted from their
stationary values σ to

σ̃k,i = σk,i − iUk (6.39)

= σk,i + i(k/kT)ωT (6.40)

= −i(ωk,i − (k/kT)ωT + iγk,i) (6.41)

= −i(∆k,i + iγk,i) (6.42)

Since the tidal potential is proportional to cos(kT x), the linear tide only consists of
modes with k = ±kT . An eigenmode can be driven to large amplitude in the linear tide
by either coupling strongly to the vertical structure of the tide (large hk,i), or being near
resonance with the tidal frequency (small σ̃k,i with ωk,i ≈ ωT). The amplitude distribution
with ωT = 0 is known as the equilibrium tide, while the corrections and resonances due to
the finite frequency of the tide is known as the dynamical tide.

Fig. 6.2 shows the linear tidal solution solved using Dedalus with Nz = 128, kT = π

and ωT = 0.0287517, on resonance with the 5th g-mode of the fiducial model. Fig. 6.3
shows the corresponding eigenmode amplitudes, computing by projecting the linear solution
against the numerically determined dual eigenvectors with 10−2 ≤ |ω | ≤ 102. The decaying
portion apparent in the pressure and specific volume perturbations is the equilibrium tide,
corresponding to the broad excitation of p-modes and g-modes seen in the amplitude dia-
gram. The centralized oscillatory feature is the dynamical tide, dominated by the resonant

118

Figure 6.2: The specific volume, pressure, and velocity deviations of the linear tidal solution
of the fiducial model in the comoving frame. The decaying feature in the specific volume
and pressure is the equilibrium tide, while the oscillatory feature near z = 1 is the dynamical
tide, dominated by a resonant g-mode.

g-mode. The extracted mode amplitudes are found to agree with the analytical results to
high precision, and the summation of the reconstitution of the linear response using the
depicted modes closely matches the original solution. These tests confirm the validity of the
dual basis and justify the assumption that the resolved eigenmodes form a sufficient basis
representing the tidal solution.

6.6 Weakly nonlinear stability

We are interested in studying the stability of perturbations around the stationary tidal
response. First, we show that to leading order, this is equivalent to examining the stability
of the linear tide.

We indicate the linear tidal solution as X̄ , satisfying LX̄ = H, and split the general
solution into the linear tide and perturbations as X = X̄ + X ′. The exact evolution of the

119

10 2 10 1 100 101 102

| |

10 5

10 4

10 3

10 2

10 1

100

101

1 a

Figure 6.3: Eigenmode amplitudes in the linear tidal solution of the fiducial model. The
blue points represent modes with positive ω, and the orange points represent modes with
negative ω. The broad distribution of the p-modes corresponds to the equilibrium tide,
while the peak in the g-modes corresponds to the resonantly-excited dynamical tide.

deviations is given by

M
∂X ′

∂t
+ LX ′ = G(X̄ + X ′, X̄ + X ′) (6.43)

= G(X̄, X̄) + G(X̄, X ′) + G(X ′, X̄) + G(X ′, X ′) (6.44)

using the bilinearity of G. Consider an exact nonlinear solution to the stationary equations
Ȳ , satisfying LȲ = H +G(Ȳ, Ȳ). Expanding Ȳ in positive powers of ε , we find that the first-
order solution is simply the linear tide, and hence we can write Ȳ = X̄ + O(ε2). Deviations
Y ′ from this solution would be governed by

M
∂Y ′

∂t
+ LY ′ = G(Ȳ,Y ′) + G(Y ′, Ȳ) + G(Y ′,Y ′) (6.45)

Taking the deviations to be small with Y ′ ∼ O(η), and substituting the expansion for Ȳ , this
becomes

M
∂Y ′

∂t
+ LY ′ = G(X̄,Y ′) + G(Y ′, X̄) + O(ε2η) + O(η2) (6.46)

Assuming η � ε , we see that to leading order O(εη), the stability of the nonlinear fixed
point is governed by the homogeneous linearized dynamics around the linear tide, even
though the linear tide is not a fixed point of the nonlinear system.

120

We therefore proceed by considering this linearized problem:

M
∂X ′

∂t
+ LX ′ ≈ G(X̄, X ′) + G(X ′, X̄) (6.47)

We are unable to directly examine this problem using the current version of Dedalus because
theRHS terms, although linear in X ′, couple different Fouriermodes due to the x-dependence
of the linear tide X̄ . Instead, we use Dedalus to calculate the mode coupling coefficients,
and determine the stability by posing the eigenvalue problem in the eigenmode space. The
amplitude equations for the above problem are

da′
k,`

dt
− σ̃k,`a′k,` = gk,`(X̄, X ′) + gk,`(X ′, X̄) (6.48)

Expanding the RHS terms gives

gk,`(X̄, X ′) = Y ∗k,`

∫
e−ikxG(X̄, X ′)dx (6.49)

= Y ∗k,`

∫
e−ikxG

(∑
m,i

ām,ieimxXm,i,
∑
n, j

a′n, je
inxXn, j

)
dx (6.50)

=
∑

m,n,i, j

ām,ia′n, jY
∗
k,`

∫
e−ikxG

(
eimxXm,i, einxXn, j

)
dx (6.51)

=
∑

m,n,i, j

ām,ia′n, jY
∗
k,`

∫
e−ikxeimxeinxGm,n

i, j dx (6.52)

=
∑

m,n,i, j

ām,ia′n, jY
∗
k,`G

m,n
i, j δm+n,k (6.53)

(6.54)

where the fourth line requires G to be horizontally homogeneous. Substituting this expres-
sion, and the equivalent for gk,`(X ′, X̄), we get

da′
k,`

dt
− σ̃k,`a′k,` =

∑
m,n,i, j

(ām,ia′n, j + a′m,i ān, j)Y
∗
k,`G

m,n
i, j δm+n,k (6.55)

=
∑

m,n,i, j

ām,ia′n, jY
∗
k,`(G

m,n
i, j + Gn,m

j,i)δm+n,k (6.56)

=
∑
n, j

[∑
m,i

ām,iY ∗k,`(G
m,n
i, j + Gn,m

j,i)δm+n,k

]
a′n, j (6.57)

=
∑
n, j

Ck,`,n, ja′n, j (6.58)

121

where Ck,`,n, j is the nonlinear coupling coefficient between the linear tide, the mode {n, j},
and the mode {k, `}.

The coupling coefficients are computed in Dedalus by utilizing its abilities to symbol-
ically compute the Frechet differentials of arbitrary expressions. The Frechet differential of
each mode around the linear tide is computed as

Kn, j = ∂XF(X̄) · (einxXn, j) (6.59)

= G(X̄, einxXn, j) + G(einxXn, j, X̄) (6.60)

=
∑
m,i

ām,ieimxeinx(Gm,n
i, j + Gn,m

j,i) (6.61)

The coupling coefficients are then recovered by projecting the differential against the desired
wavenumber and dual mode as

Ck,`,n, j = Y ∗k,`

∫
e−ikxKn, jdx (6.62)

Finally, we have

da′
k,`

dt
=

∑
n, j

(σ̃k,`δk,nδ`, j + Ck,`,n, j)a′n, j (6.63)

whichwewrite in thematrix form dt A = QA. Seekingmodes that behave as A ∼ est , we now
have a standard eigenvalue problem sA = QA for the collective growth rate of nonlinearly
coupled modes. The coupling coefficients are proportional to the tidal amplitude ε , so the
threshold amplitude for a nonlinear instability of the tide is the minimum ε for which there
is some eigenvalue s with<(s) > 0.

6.7 Threshold calculations and comparison to simulations

Fig. 6.4 shows the coupling coefficient matrix for the resolved modes (|ωkT/k | ≥ 5 × 10−3

and |ω | ≤ 102) of the fiducial model with k = −n = 0.5kT . The modes are ordered by ω, so
the three blocks in each direction correspond to the negative p-modes, negative then positive
g-modes, and positive p-modes. Fig. 6.5 shows theQ matrix for the fiducial model including
resolved modes with k, n ∈ {−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2}kT and ε = 10−4. The block-
banded structure is due to the horizontal selection rule n ± kT = m. The eigenvalues of this
Q matrix with ε = 10−4, and the structure of the most-unstable coupled mode, are shown
in Fig. 6.6. For small ε , the eigenvalues of Q simply match the natural frequencies of the
eigenmodes from each of the included horizontal wavenumbers, and the eigenmodes of Q

are dominated by the associated uncoupled modes. As ε is increased, the eigenvalues of Q

122

0 25 50 75 100 125 150 175

j

0

25

50

75

100

125

150

175

5 4 3 2 1 0 1
log10|Ck, , n, j|

Figure 6.4: Coupling coefficient matrix for the fiducial model with k = −n = 0.5kT . The
modes are ordered by ω, producing a block structure corresponding to negative p-modes,
negative g-modes, positive g-modes, then positive p-modes.

123

0 200 400 600 800 1000 1200 1400 1600
(n, j)

0

200

400

600

800

1000

1200

1400

1600

(k
,

)

10 8 6 4 2 0
log10|Q|

Figure 6.5: Q matrix describing the weakly-nonlinear dynamics of perturbations to the
linear tide in the eigenmode basis for k, n ∈ {−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2}kT and
ε = 10−4. The diagonal entries contain the modes’ natural frequencies and linear damping.
The off-diagonal blocks are the coupling coefficients between groups of modes satisfying
the horizontal selection rule n ± kT = m.

124

102 101 100 10 1 10 2 10 3 0 10 3 10 2 10 1 100 101 102
10 3

10 4

10 5

10 6

10 7

10 8

0

10 8

10 7

10 6

10 5

0 200 400 600 800 1000 1200 1400 1600

Mode index

15

10

5

0

lo
g 1

0|a
|

Figure 6.6: Top panel: frequencies and growth rates of the eigenmodes of the Q matrix
for the fiducial model with ε = 10−4. The circles indicate the natural frequencies of the
included modes with various horizontal wavenumbers, shifted to the comoving frame. The
dots indicate the eigenvalues of Q, which become increasingly perturbed from the natural
frequencies as ε increases. Bottom panel: Distribution of mode amplitudes of the unstable
mode with γ ∼ 10−5. The modes are ordered by ω and then by k. Solid vertical lines
separate the groups by k, and dashed vertical lines separate the p and g modes for a given k.

are perturbed from the natural mode frequencies and the eigenmodes ofQ gain contributions
from a range of uncoupled modes. As shown in the figure, the most unstable mode for this
model contains contributions from a wide range of horizontal wavenumbers, indicating that
the collective behavior of many coupled modes is important to the stability of the tide in
this case.

Fig. 6.7 shows the maximum growth rate of the eigenmodes of Q as a function of ε for
this set of modes. For ε & 3×10−5, Q has eigenvalues with positive real part, indicating that
perturbations to the linear tide are unstable in this range. This calculation was repeated with
different groups of horizontal wavenumbers. The threshold amplitude was found to decrease
as more wavenumbers were included in the calculation, and roughly saturated with the set
listed above. Since not all wavenumbers and eigenmodes can be included, this procedure

125

Si
m

s

Stable Stable Unstable Unstable

10 6 10 5 10 4 10 3

10 8

10 7

10 6

10 5

10 4

10 3
|m

ax
(s)

|

Figure 6.7: Bottom: Maximum collective growth rate, solved by computing the eigen-
values of the Q matrix, as a function of the tidal amplitude ε . The downward blue ar-
rows indicate negative growth rates (damping), while the upward orange arrows indicate
positive growth rates. The threshold for nonlinear instability of the included modes is
εc ∼ 3 × 10−5. Top: Observed stability of tidal response in fully nonlinear simulations with
ε = 10−6, 10−5, 10−4, 10−3.

provides what is likely a conservative estimate of the threshold amplitude for nonlinear tidal
instabilities.

To test the prediction of the weakly nonlinear stability calculation, we integrate the fully
nonlinear system using the initial value solver in Dedalus. We have performed simulations
with typical resolutions of Nx = 256 and Nz = 1024. The equations were integrated
with the RK222 timestepper, a two-stage second-order mixed implicit-explicit Runge-Kutta
integrator. Although the resolution requirements are not too taxing, there is a large dynamic
range in timescales between the p-modes and g-modes of interest. Since the terms producing
linear acoustic waves are implicitly integrated, the acoustic timescales do not need to be
resolving for stability, but for accuracy in assessing the amplitude of the corresponding
p-modes. We run the initial value problem for order 100 tidal periods, but with typical
timesteps of 10−4ω−1

T .
The simulations were started from the linear tidal solution. For the fiducial model, we

find that simulations with ε ≤ 10−5 demonstrate no instabilities on the simulated timescale,
and instead underwent a slight adjustment to a steady nonlinear equilibrium. Simulations
with ε ≥ 10−4 develop nonlinear instabilities that eventually lead to the crash of the sim-
ulation, since insufficient resolution was used to examine their saturation. Overall, these

126

simulations roughly bracket the transition to high-dissipation tidal states to occur within
10−5 < ε < 10−4, in agreement with the predictions from the computed coupling coeffi-
cients.

6.8 Conclusion

We have used an Eulerian spectral framework to examine the threshold for nonlinear tidal
instabilities in a plane-parallel atmosphere. We first develop a background structure model
comprising several scale-heights with a prescribing buoyancy profile. We then compute
the non-adiabatic eigenmodes of this atmosphere, and a numerical dual basis that can be
used to decompose a general solution into these modes. We solve for the linear response
to an externally imposed tidal force, and use a symbolic linearization of the fully nonlinear
dynamical equations to compute the coupling coefficients that control the evolution of
deviations from the linear tidal solution. Solving an auxiliary eigenvalue problem with the
computedmode frequencies, damping rates, and coupling coefficients yields the increasingly
coupled behavior of the atmospheric modes as the tidal amplitude is increased. We are able
to predict a threshold amplitude for the nonlinear instability of the linear tide in a fiducial
model which agrees with simulations of the fully nonlinear equations.

Thiswork primarily serves as a demonstration of the possibilities for using a generalized
spectral method for computing tidal instability thresholds. Although limited by resolution
constraints, this approach’s ability to internally and self-consistently build, analyze, and sim-
ulate a tidally-influenced atmosphere may provide a useful alternative for testing analytical
and semi-analytical approaches to this problem. The capability of Dedalus to perform all of
the above steps also provides a great deal of flexibility for exploring different tidal models
in the future. Changes to the governing equations and parameters are easily propagated
through the numerical workflow due to the symbolic representation used in Dedalus, so
nearly identical code could be used to perform weakly nonlinear stability analyses of many
other systems, as well.

In futurework, we plan to explore a variety ofmodelswith higher resolution simulations
to more precisely test the predicted instability threshold and growth rates. Confirming the
validity of the weakly-nonlinear stability analysis in the plane-parallel atmosphere will be a
useful step towards more realistic computations. In particular, we plan to extend this work
to full spherical geometries with newly developed sparse spectral bases (Daniel Lecoanet
et al., 2018; G. Vasil et al., 2018) to examine the progression of nonlinear instabilities in
more realistic models of tidally perturbed stars and planets. Computations of the saturation
of instabilities in realistic geometries would be particularly useful as it is a very difficult
feature to study using semi-analytical approaches, yet is key to using observations of binary

127

orbital evolution to infer interior properties of stars and planets.

128

Bibliography

Abbott, B P et al. (2017). “GW170817: Observation of Gravitational Waves from a Binary
Neutron Star Inspiral”. In: Physical Review Letters 119.1, p. 161101.

Agathos, M et al. (2015). “Constraining the neutron star equation of state with gravita-
tional wave signals from coalescing binary neutron stars”. In: Physical Review D 92.2,
p. 023012.

Armfield, S W, John C Patterson, and Wenxian Lin (2007). “Scaling investigation of the
natural convection boundary layer on an evenly heated plate”. In: International Journal
of Heat and Mass Transfer 50.7, pp. 1592–1602.

Ascher, Uri M, Steven J Ruuth, and Raymond J Spiteri (1997). “Implicit-explicit Runge-
Kuttamethods for time-dependent partial differential equations”. In:AppliedNumerical
Mathematics 25.2-3, pp. 151–167.

Barker, Adrian J and Gordon I Ogilvie (2011). “Stability analysis of a tidally excited internal
gravity wave near the centre of a solar-type star”. In: Monthly Notices of the Royal
Astronomical Society 417.1, pp. 745–761.

Behnel, S. et al. (2011). “Cython: The Best of Both Worlds”. In: Computing in Science
Engineering 13.2, pp. 31–39. issn: 1521-9615. doi: 10.1109/MCSE.2010.118.

Bergholz, R F (1978). “Instability of steady natural convection in a vertical fluid layer”. In:
Journal of Fluid Mechanics 84.04, pp. 743–768.

Boyd, J P (2001). Chebyshev and Fourier Spectral Methods: Second Revised Edition. Dover
Books on Mathematics. Dover Publications.

Burns, Keaton J (2013). “Chebyshev Spectral Methods with applications to Astrophysical
Fluid Dynamics”. MA thesis. University of Cambridge.

Cimarelli, Andrea and Diego Angeli (2017). “Routes to chaos of natural convection flows in
vertical channels”. In: International Communications in Heat and Mass Transfer 81,
pp. 201–209.

“Observations: Cryosphere” (2009). In: Climate Change 2013 - The Physical Science Basis.
Ed. by Intergovernmental Panel on Climate Change. Cambridge: Cambridge University
Press, pp. 317–382.

Collette, Andrew (2013). Python and HDF5. O’Reilly.

129

https://doi.org/10.1109/MCSE.2010.118

Dalcin, Lisandro, Rodrigo Paz, Mario Storti, and Jorge D’Elia (2008). “MPI for Python:
Performance improvements and MPI-2 extensions”. In: Journal of Parallel and Dis-
tributed Computing 68.5, pp. 655–662. issn: 0743-7315. doi: https://doi.org/10.
1016/j.jpdc.2007.09.005. url: http://www.sciencedirect.com/science/
article/pii/S0743731507001712.

Damour, Thibault, Alessandro Nagar, and Loïc Villain (2012). “Measurability of the tidal
polarizability of neutron stars in late-inspiral gravitational-wave signals”. In: Physical
Review D 85.1, p. 123007.

Dinniman, Michael et al. (2016). “Modeling Ice Shelf/Ocean Interaction in Antarctica: A
Review”. In: Oceanography 29.4, pp. 144–153.

Driscoll, Tobin A and Nicholas Hale (2015). “Rectangular spectral collocation”. In: IMA
Journal of Numerical Analysis, dru062.

Essick, Reed, Salvatore Vitale, and Nevin N Weinberg (2016a). “Impact of the tidal p -g
instability on the gravitational wave signal from coalescing binary neutron stars”. In:
Physical Review D 94.1, p. 103012.

Essick, Reed and Nevin N Weinberg (2016b). “Orbital Decay of Hot Jupiters Due to Non-
linear Tidal Dissipation within Solar-type Hosts”. In: The Astrophysical Journal 816.1,
p. 18.

Fedorovich, Evgeni and Alan Shapiro (2009). “Turbulent natural convection along a vertical
plate immersed in a stably stratified fluid”. In: Journal of FluidMechanics 636, pp. 41–.

Frigo, Matteo and Steven G. Johnson (2005). “The Design and Implementation of FFTW3”.
In:Proceedings of the IEEE 93.2. Special issue on “ProgramGeneration, Optimization,
and Platform Adaptation”, pp. 216–231.

Gayen, Bishakhdatta, RossWGriffiths, andRossCKerr (2015). “MeltingDrivenConvection
at the Ice-seawater Interface”. In: Procedia IUTAM 15, pp. 78–85.

— (2016). “Simulation of convection at a vertical ice face dissolving into saline water”.
In: Journal of Fluid Mechanics 798, pp. 284–298.

Gill, A E and A Davey (1969). “Instabilities of a buoyancy-driven system”. In: Journal of
Fluid Mechanics 35.04, pp. 775–798.

Hinderer, Tanja et al. (2016). “Effects of Neutron-Star Dynamic Tides on Gravitational
Waveforms within the Effective-One-Body Approach”. In: Physical Review Letters
116.18, pp. 301–6.

Jenkins, Adrian (2011). “Convection-Driven Melting near the Grounding Lines of Ice
Shelves andTidewaterGlaciers”. In: Journal of PhysicalOceanography41.12, pp. 2279–
2294.

— (2016). “A Simple Model of the Ice Shelf-Ocean Boundary Layer and Current”. In:
Journal of Physical Oceanography 46.6, pp. 1785–1803.

130

https://doi.org/https://doi.org/10.1016/j.jpdc.2007.09.005
https://doi.org/https://doi.org/10.1016/j.jpdc.2007.09.005
http://www.sciencedirect.com/science/article/pii/S0743731507001712
http://www.sciencedirect.com/science/article/pii/S0743731507001712

Jenkins, Adrian, Keith W Nicholls, and Hugh F J Corr (2010). “Observation and Parameter-
ization of Ablation at the Base of Ronne Ice Shelf, Antarctica”. In: Journal of Physical
Oceanography 40.10, pp. 2298–2312.

Jones, Eric, Travis Oliphant, Pearu Peterson, et al. (2001). SciPy: Open source scientific
tools for Python. [Online; accessed <today>]. url: http://www.scipy.org/.

Kerr, Ross C and Craig D McConnochie (2015). “Dissolution of a vertical solid surface by
turbulent compositional convection”. In: Journal of FluidMechanics 765, pp. 211–228.

Kimura, Satoshi, Paul R Holland, Adrian Jenkins, and Matthew Piggott (2014). “The Effect
ofMeltwater Plumes on theMelting of a Vertical Glacier Face”. In: Journal of Physical
Oceanography 44.12, pp. 3099–3117.

Lackey, Benjamin D and Leslie Wade (2015). “Reconstructing the neutron-star equation of
state with gravitational-wave detectors from a realistic population of inspiralling binary
neutron stars”. In: Physical Review D 91.4, p. 043002.

Lecoanet, Daniel, GeoffreyMVasil, Keaton J Burns, Benjamin P Brown, and Jeffrey S Oishi
(2018). “Tensor calculus in spherical coordinates using Jacobi polynomials, Part-II:
Implementation and Examples”. In: arXiv.org, arXiv:1804.09283. arXiv: 1804.09283
[1804].

Lecoanet, D et al. (2016). “A validated non-linear Kelvin-Helmholtz benchmark for numer-
ical hydrodynamics”. In: Monthly Notices of the Royal Astronomical Society 455.4,
pp. 4274–4288.

Magorrian, Samuel J and Andrew JWells (2016). “Turbulent plumes from a glacier terminus
melting in a stratified ocean”. In: Journal of Geophysical Research: Oceans 121.7,
pp. 4670–4696.

McConnochie, Craig D and Ross C Kerr (2016a). “The effect of a salinity gradient on the
dissolution of a vertical ice face”. In: Journal of Fluid Mechanics 791, pp. 589–607.

— (2016b). “The turbulent wall plume from a vertically distributed source of buoyancy”.
In: Journal of Fluid Mechanics 787, pp. 237–253.

— (2017). “Enhanced ablation of a vertical ice wall due to an external freshwater plume”.
In: Journal of Fluid Mechanics 810, pp. 429–447.

Meibom, Søren and Robert D Mathieu (2005). “A Robust Measure of Tidal Circularization
in Coeval Binary Populations: The Solar-Type Spectroscopic Binary Population in the
Open Cluster M35”. In: The Astrophysical Journal 620.2, pp. 970–983.

Ogilvie, Gordon I (2014). “Tidal Dissipation in Stars and Giant Planets”. In: Annual Review
of Astronomy and Astrophysics 52.1, pp. 171–210.

Olver, S and A Townsend (2013). “A fast and well-conditioned spectral method”. In: SIAM
Review 55.3, pp. 462–489.

131

http://www.scipy.org/
http://arxiv.org/abs/1804.09283
http://arxiv.org/abs/1804.09283

Read, Jocelyn S et al. (2009). “Measuring the neutron star equation of state with gravitational
wave observations”. In: Physical Review D 79.1, p. 124033.

Sciascia, R, F Straneo, C Cenedese, and PHeimbach (2013). “Seasonal variability of subma-
rine melt rate and circulation in an East Greenland fjord”. In: Journal of Geophysical
Research: Oceans 118.5, pp. 2492–2506.

Slater, D A, P W Nienow, T R Cowton, D N Goldberg, and A J Sole (2015). “Effect of
near-terminus subglacial hydrology on tidewater glacier submarine melt rates”. In:
Geophysical Research Letters 42.8, pp. 2861–2868.

Slater, Donald A, Dan N Goldberg, Peter W Nienow, and Tom R Cowton (2016). “Scalings
for SubmarineMelting at Tidewater Glaciers fromBuoyant Plume Theory”. In: Journal
of Physical Oceanography 46.6, pp. 1839–1855.

Sprague, Michael, Keith Julien, Edgar Knobloch, and Joseph Werne (2006). “Numerical
simulation of an asymptotically reduced system for rotationally constrained convec-
tion”. In: Journal of Fluid Mechanics 551.-1, pp. 141–174.

Straneo, Fiamma and Claudia Cenedese (2015). “The Dynamics of Greenland’s Glacial
Fjords and Their Role in Climate”. In: Annual Review of Marine Science 7.1, pp. 89–
112.

TheHDFGroup (1997).HierarchicalDataFormat, version 5. http://www.hdfgroup.org/HDF5/.
Vasil, Geoff, Daniel Lecoanet, Keaton Burns, JeffOishi, and BenBrown (2018). “Tensor cal-

culus in spherical coordinates using Jacobi polynomials. Part-I: Mathematical analysis
and derivations”. In: arXiv.org, arXiv:1804.10320. arXiv: 1804.10320 [1804].

Vasil, Geoffrey M et al. (2016). “Tensor calculus in polar coordinates using Jacobi polyno-
mials”. In: Journal of Computational Physics 325, pp. 53–73.

Venumadhav, Tejaswi, Aaron Zimmerman, and Christopher M Hirata (2014). “The Stabil-
ity of Tidally Deformed Neutron Stars to Three- and Four-mode Coupling”. In: The
Astrophysical Journal 781.1, p. 23.

Wang, D and S J Ruuth (2008). “Variable step-size implicit-explicit linear multistep meth-
ods for time-dependent partial differential equations”. In: Journal of Computational
Mathematics 26.6.

Weinberg, Nevin N (2016). “Growth Rate of the Tidal p-Mode g-Mode Instability in Coa-
lescing Binary Neutron Stars”. In: The Astrophysical Journal 819.2, p. 109.

Weinberg, Nevin N, Phil Arras, and Joshua Burkart (2013). “An Instability due to the
Nonlinear Coupling of p-modes to g-modes: Implications for Coalescing Neutron Star
Binaries”. In: The Astrophysical Journal 769.2, p. 121.

Weinberg, Nevin N, Phil Arras, Eliot Quataert, and Josh Burkart (2012). “Nonlinear Tides
in Close Binary Systems”. In: The Astrophysical Journal 751.2, p. 136.

132

http://arxiv.org/abs/1804.10320

Wells, Andrew J andMGraeWorster (2008). “A geophysical-scale model of vertical natural
convection boundary layers”. In: Journal of Fluid Mechnanics 609, pp. 111–137.

133

	Abstract
	Acknowledgments
	Thesis outline
	The Dedalus Project
	Glacial Meltwater Plumes
	Nonlinear Tidal Instabilities

	I The Dedalus Project
	Introduction to Spectral Methods
	Spectral representations of functions
	Solving differential equations with spectral methods
	Generating sparse spectral methods

	Design and Implementation of Dedalus
	Introduction
	Spectral bases
	Domains
	Fields
	Operators
	Problems
	Solvers
	Analysis and post-processing
	Benchmarks

	II Glacial Meltwater Plumes
	Introduction to melt-driven plumes
	Global ice balances and sea-level rise
	Models of submarine melting
	Governing equations for flow near melting boundaries

	Convection from a heated sidewall in a thermally stratified fluid
	Introduction
	Model definition
	Laminar solution and linear stability
	Simulations of unsteady solutions
	Discussion
	Conclusion

	III Nonlinear Tidal Instabilities
	Introduction to astrophysical tides
	The influence of tides of binary systems
	Estimating tidal dissipation rates
	Probing neutron star interiors

	Direct simulations of tidal stability thresholds
	Introduction
	Background structure
	Governing equations
	Non-adiabatic eigenmodes
	Linear tidal solution
	Weakly nonlinear stability
	Threshold calculations and comparison to simulations
	Conclusion

