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Experiments are conducted to measure the resistance
experienced by light cylinders rolling over flat beds
of granular media. Sand and glass spheres are used
for the beds. The trajectories of the rolling cylinders
are determined through optical tracking, and velocity
and acceleration data are inferred through fits to
these trajectories. The rolling resistance is dominated
by a velocity-independent component, but a velocity
dependent drag exceeding the expected strength of
air drag is also observed. The results are compared
to a theoretical model based on a cohesionless Mohr-
Coulomb rheology for a granular medium in the
presence of gravity. The model idealises the flow
pattern underneath the rolling cylinder as a plastically
deforming zone in front of a rigidly rotating plug
attached to the cylinder, as proposed previously for
cylinders rolling on perfectly cohesive plastic media.
The leading-order, rate-independent rolling resistance
observed experimentally is well reproduced by the
model predictions.

c© The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.&domain=pdf&date_stamp=
mailto:kjburns@mit.edu


2

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

1. Introduction
It is commonly experienced that motion over loose sand is hindered by the response of the
granular medium to the applied load. In particular, sandy surfaces often present substantial
difficulties to wheeled vehicles [1], impacting the design of tires and robotic rovers [2,3]. The
rolling of rocks over sand may also play an important role in geophysical processes such as the
formation of screes [4]. Although Coulomb provided detailed measurements of rolling resistance,
Reynolds [5] gave the first quantitative discussion of the origin of the phenomenon in terms of
the deformation of the surface in rolling contact. The resulting friction experienced by rubber
and metal surfaces is now understood to be a combination of Reynolds’ deformation and surface
adhesion [6,7]. For wheels travelling over sand, the problem is complicated further by the lack
of a general theory of the deformation of a granular medium, the significant depth to which the
wheels of a heavy vehicle will sink, and the substantial sideways flow of sand. Nevertheless, a
rich vein of literature has built up on the resistance to wheels driven over sand and soft soils
(e.g. [1,3,8–16]).

In this work, we consider the rolling motion of a long and light cylinder over an initially
static granular bed. In this limit, the contact area between the cylinder and the bed is small
relative to the surface area of the cylinder, and the deformation of the granular media is largely
two-dimensional and both localised and superficial. This sets our work apart from much of the
literature on rotating wheels and recent experiments on rolling spheres [17], where the problem
is inherently three-dimensional and the weight of the object traversing the surface leads to
significant sinking and compaction of the underlying granular material. Additional complications
are thereby minimised, which may allow us to gain better insight into the dynamics of granular
deformation under a rolling object.

Our study begins with a series of experiments to determine the resistance experienced by the
rolling cylinders. A particular focus is to experimentally examine the dependence of the resistance
on the speed of the cylinders, which reflects the rate-dependent rheology of the granular material
and bears on the relevance of recently proposed empirical friction laws [18] For this task, we use
two types of granular media: a coarse sand and glass spheres (ballotini). For both, the grain size
is much smaller than the radii of the rolling cylinders.

We complement the experiments with a rate-independent theoretical model for the leading-
order resistance based on Mohr-Coulomb plasticity theory for the granular bed. In the limit that
the contact area is much smaller than the cylinder area, the stress field induced by the rolling
cylinder can be constructed by asymptotic theory. This device, which was proposed by Spencer
[19,20], has been used previously to model the rolling of cylinders over cohesive material [21,22],
neglecting the effect of gravity. For a non-cohesive granular medium with a free surface, however,
gravity cannot be neglected, as in the calculation of the critical load supported by a foundation
[23–25]. Our analysis applies Spencer’s method to a cylinder rolling over such materials.

A critical detail of the generalisation is the flow pattern that must be adopted underneath
the contact region between the sand and cylinder. We adopt a construct proposed by Collins
[26] (see also [27]) in which the deformation due to rolling consists of two parts: a zone of
plastic deformation extending below and ahead of the forward section of the contact region,
together with a plug that is rigidly attached to the cylinder below the rear section of the
contact region. Collins’ construction allows for contacts that are not necessarily small and has
received some support from numerical computations [15], but was proposed for cohesive material
neglecting gravity. The two-part structure of the flow pattern is, however, essential for a consistent
description of the forces and torques acting on the cylinder, and is reminiscent of experiments and
models of wheels rolling over sand [9–14].

The experimental apparatus, procedures, and dataset are described in § 2. In § 3, we outline the
theoretical model to calculate rolling resistance. We compare the predictions of the model to our
experimental results in § 4. The Appendices contain some additional theoretical results, exposing
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Figure 1: Channel geometry: final frame of a rolling cylinder trial on the sand bed with the
corresponding image trajectory plotted in white.

Material d (mm) ρs (g/cm
3) φc (deg)

Aquarium sand 0.9± 0.15 1.59± 0.09 36.1± 1.0

Ballotini 1.0± 0.2 1.55± 0.07 23.7± 0.6

Table 1: Mean particle diameter d, apparent density ρs, and dynamic angle of repose φc of the
granular media used in the experiments [28].

issues with the Mohr-Coulomb predictions for the velocity field and free surface of the granular
medium, and relating our analysis back to that of Collins [26].

2. Experiments

(a) Apparatus and protocol
We constructed a channel using a high-density polyethylene board and wooden side-rails to
contain a bed of granular material, over which we rolled a variety of cylinders (Figure 1). The
channel was approximately 244 cm in length, 31 cm in width, and 9 cm in depth. Two granular
materials were used in our experiments: PetCo aquarium sand, and Potters Industries A-100 glass
beads (ballotini). Both materials had mean grain sizes near 1mm, but the sand grains were more
angular than the nearly spherical ballotini, resulting in substantially different dynamic angles of
repose between the materials. The material parameters are provided in Table 1, and were taken
from Sauret et al. [28], who used the same materials.

To prepare the granular bed, we filled the channel with a granular material, and then loosely
scraped off the top surface layer down to a depth set using the top of the side-rails. No effort
was made to compact the bed any further. To reset the bed after a disturbance to the surface,
we manually stirred the material throughout its depth, and repeated the levelling procedure.
On the ballotini, the cylinders typically left large (several millimetre deep) tracks as they rolled,
so the surface was reset between each run. On the sand, the cylinders left tracks that were
barely perceptible to the naked eye, but could be highlighted by shadows cast when the surface
was illuminated from a shallow angle. The shadows revealed that the surface traversed by the
cylinders had been smoothed out over the grain scale, and small levees had been left to either side
of the track. To speed up the data taking process, we therefore only reset the sand surface when
a large disturbance occurred (e.g. a stray cylinder). Despite the lack of any substantial surface
rearrangement by the cylinders on the sand, the rolling resistance was measurably sensitive to
the surface history: the resistance was noticeably different when rolling a cylinder over previous
tracks (an effect familiar from the rolling of spheres over rubber and metal [6]). To reduce this
affect as much as possible, we began the experiments with sand using a bedding-in procedure
described in § (c).
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Cylinder M (g) D (cm) b (cm) L (cm) α ρc (g/cm
3)

20 48.13 2.687 0.315 15.0 0.793 0.5658
21 72.06 3.343 0.360 15.0 0.807 0.5473
22 94.27 4.237 0.370 15.0 0.840 0.4457
23 113.56 4.857 0.385 15.0 0.854 0.4086
24 153.25 6.042 0.425 15.0 0.869 0.3563
25 246 7.288 0.560 15.0 0.858 0.3931
26 312 8.896 0.560 15.0 0.882 0.3346
27 754 21.94 0.500 16.2 0.955 0.1231
28 43.45 5.103 0.160 15.0 0.939 0.1416
29 34.84 5.094 0.145 15.0 0.944 0.1139
30 204 11.412 0.330 15.0 0.943 0.1329
31 656 11.445 0.950 15.0 0.847 0.4251
32 55.27 4.217 0.290 15.0 0.871 0.2638
36 79.50 9.559 0.155 15.0 0.968 0.0738
42 12.89 4.245 0.055 15.0 0.974 0.0607

Table 2: Reference identifier, massM , outer diameter D, wall thickness b, length L, dimensionless
moment of inertia α= I/MR2, and mean density ρc for the cylinders used in the experiments.

The cylinders were sections cut from PVC and other plastic tubing and had the radii R and
masses M listed in Table 2. This table also reports the quantity α= I/MR2, where I is the
moment of inertia, which provides a dimensionless description of the radial mass distribution,
with α= 1/2 for a uniform solid cylinder, and α→ 1 for a thin cylindrical shell. The cylinders
were sanded, cleaned, sprayed with high-visibility orange paint, and sanded again to give them
consistent surface textures and appearances. A camera was mounted to the ceiling above the
bed to record the cylinders’ trajectories in colour at 60 frames per second with a resolution of
1920× 1080 pixels. The field of view covered 2m of the bed, providing a resolution of roughly
1mm per pixel.

The cylinders were placed on a flat inclined ramp at the top of the runway and rolled onto the
surface of the granular bed. A flexible sheet was placed over the end of the ramp to smooth
the transition onto the bed and reduce any bouncing of the cylinders. The initial velocity of
the cylinders as they entered the bed was controlled by adjusting the starting position of the
cylinders along the ramp. Trials were discarded if they came within a few centimetres of the
channel sidewalls, which tended to occur more frequently for lighter cylinders and at higher
initial velocities. We repeated rolls until we recorded three to five successful trials with the same
experimental parameters.

(b) Data processing
The data processing consisted of three stages. First, “image trajectories” indicating the image
coordinates of the cylinders for each video frame were calculated (see Figure 1). Second, position
markers on the channel were used to infer the camera’s projection for the scene. Third, the “object
trajectories” indicating the real-space positions of the cylinders over time were extracted by
inverting the camera projection for the calculated image trajectories. For the latter, we refer to
the tops of the side-rails to define a laboratory coordinate system, with X pointing along the
channel, Y across it, and Z directed vertically upwards.

(i) Image trajectories

The bright orange paint of the cylinders allowed them to be precisely differentiated from the
bed and the rest of the scene via colour filtering. The OpenCV 3.0 library [29] was used to
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Figure 2: Stages of image-position extraction. Top: A frame from a video recording. Middle:
Colour distance from reference orange, indicated in greyscale with darker pixels being closer
in HSV space. The shaded red region is excluded from further processing to isolate objects on the
bed. Bottom: Match field derived from the colour distance, with lighter pixels indicating a better
match. The red dot indicates the centroid of the match field and defines the cylinder’s image
position.

extract individual frames from the videos and convert them to hue-saturation-value (HSV)
colour space. We applied a light (11 pixel) Gaussian blur to each frame and computed the HSV
colour distance d of each of the pixels within the granular bed from a reference orange value of
(4, 205, 255). Using the colour distance d, we constructed a “match value” m for each pixel as
m= 1

2 [1− tanh(d−1005 )], and took the centroid of match field to define the image position of the
cylinder for that frame. The combination of the Gaussian blur and the smoothed match statistic
dithers the edges of the cylinder, allowing for sub-pixel precision in the determination of the
cylinder’s image centroid. These processing stages for a sample frame are shown in Figure 2.

(ii) Camera calibration

To accurately determine the cylinder’s position on the bed from its image coordinates, the camera
projection was precisely characterised. We performed a standard calibration using routines from
the OpenCV 3.0 library, which are based on a pinhole camera model with corrections for common
modes of lens distortion. We first used images of a standard chessboard pattern to determine
the camera’s intrinsic projection parameters. For each scene, we then used the image positions of
distance markers on the channel side rails to infer the pose of the channel relative to the camera.

The image coordinates of any point (X,Y, Z) in the laboratory frame could then be estimated
by composing the best-fit pose transformation with the intrinsic camera projection. The difference
between the measured image coordinates of the distance markers and the estimated image
coordinates computed via this procedure constitutes the reprojection error. Our calibration
procedure typically yielded reprojection errors of about 3 px.

(iii) Object trajectories

The camera and scene calibrations were used to convert the image trajectories into object
trajectories describing the (X,Y ) position of the cylinder centres over time for each trial. In a
given image, each pixel is the projection of an entire line-of-sight in the object coordinate space. If
the image coordinates and one of the object coordinates (e.g. Z) of a point is known, however,
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this degeneracy can be broken and the projection inverted to determine the two remaining
unknown object coordinates (e.g. (X,Y )). For each trial, we used the vertical offset of the material
surface from the side rails and the radius of the cylinder to estimate the height Z of the plane
containing the cylinder centre. The inversion of a cylinder’s image position at this Z then yields
an estimate of the (X,Y ) coordinates of the centre of the cylinder over the bed. The error in
this procedure is dominated by the reprojection error of the camera calibration, resulting in a
systematic uncertainty of about 3mm in the absolute positions in our object trajectories.

(c) Results
We initially tilted the channel by supported it at different heights under the two ends, and varied
the angle to look for steady rolling states. We found, however, that the channel was insufficiently
stiff and would flex under its own weight, resulting in a spatially-varying downslope component
of gravity, as well as further errors in the calibration procedure. To avoid these issues, we laid the
channel level with distributed supports to keep it flat to within 1mm. Removing any gravitational
acceleration along the bed had the further advantage of ensuring that the rolling resistance was
more easily measured. However, because our results pertain to unsteady motion, they may differ
from those for cylinders towed at constant speed.

In our preliminary experiments on the sand, we also explored the effect of the length of the
cylinders and the depth of the granular bed on the resistance. We found that there were no
significant differences in the trajectories of different length cylinders of the same PVC piping.
Similarly, no significant or systematic differences were found for trials on 1, 3, 5, 7, and 9 cm deep
sand beds. We therefore decided to fix the cylinder lengths to be 15 cm and the depth of the bed
to be 7 cm for the sand and 2 cm for ballotini to reduce the number of parameters being varied.
With these considerations, we built a dataset of over 400 trials. Plots of the trajectories for several
cylinders on the ballotini are shown in Figure 3.

Two dimensional X − Y plots of the trajectories are useful for identifying trials in which
cylinders swerved to the side and rolled close to the side-rails, where they tended to slow down
or abruptly change direction. Many trails which strayed from the centreline of the bed appeared
to continue turning as they rolled (Figure 3(a)), suggesting that there may be an instability
associated with perturbations away from straight or level rolling. The veering rate correlated with
mean cylinder density: overall, 15% of the trials veered more than 4 cm from the centreline, but
25% of the lighter cylinders and under 10% of the heavier cylinders rolled off centre. To minimize
any effects of the sidewalls on the bed dynamics, we deleted the trials that veered more than 4 cm

off-centre, and used the X components of the remaining trajectories to study the kinematics of
the cylinders.

The millimetre-scale accuracy of the position determination allows us to use finite differences
in time to estimate the downslope velocities. Further differentiation to determine the acceleration,
however, is precluded by the noise in the position measurements. In Figure 3, the cylinder
accelerations are instead estimated by differentiating linear least squares fits of quadratic
polynomials to the velocity data in panel (c). In general, however, we find that the form of such
fits often severely biases the shape of the resulting acceleration-velocity curves (panel (d)), and
ultimately, we favour the forward-modelling approach of § 4 for determining the dependence of
acceleration on velocity.

For trials on the sand, where the surface was not reset between each run, we observed
a systematic change in the stopping distances of the cylinders when they were first rolled
over a fresh surface. We attributed this to a superficial compaction and smoothing of the top
layers of grains, which affected the rolling resistance. To eliminate this effect and begin with a
surface that accommodated any sideways migration of our cylinders, we therefore followed a
bedding-in procedure at the beginning of the experiments: we first rolled a much longer (25 cm)
cylinder down the track repeatedly until it achieved a consistent stopping distance. Despite this
preliminary preparation of the surface, there were still noticeable changes in the rolling resistance
when cylinders were switched. The stopping distances of the first few trials with each cylinder
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Figure 3: All trajectories for cylinder 24 (green), 29 (blue), and 36 (orange) on ballotini. (a) Two-
dimensional trajectories across the bed, with a stretched aspect ratio to emphasise lateral motion.
(b) Along-channel positions over time. (c) Along-channel velocities over time. (d) Along-channel
accelerations versus velocity, from least-squares quadratic fits to the velocity data.
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Figure 4: (a) Stopping distance of successive trials on sand for cylinders 23, 24 and 25. (b) Rollback
on ballotini, showing along-channel positions against time, aligned by the time at the maximum
position and vertically offset by cylinder for clarity. (c) Along-channel velocities over time of
cylinder 23 on sand.

typically increased or decreased, depending on the cylinder, until saturating about 10 cm from the
first stopping position (Figure 4(a)). After 3 or more trials, the stopping distances were typically
reproducible to within several centimetres, leading us to discard the initial trials that showed
obvious an re-bedding behaviour. Evidently, each cylinder affects the granular surface slightly
differently, but we did not explore this effect in any further detail.

Another interesting feature of the rolling dynamics arises at the ends of the trajectories where
the cylinders come to a stop on the bed. As shown in Figure 4(b), the cylinders tend to roll
backwards several millimetres before coming to a complete stop. This effect may be due to the
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Figure 5: (a) Geometry of a rigid cylinder rolling on a deformable surface. (b) Magnification of the
flowing region (dark gray, labelled A) under the cylinder.

mound of grains, or “bow wave”, that builds up ahead of the cylinder and transmits the forces
from the bed during rolling. Once the cylinder is arrested, however, the horizontal bed reaction
becomes unbalanced, momentarily pushing the cylinder backwards.

To test the reproducibility of the dynamics, we conducted trials with a range of initial velocities
for each cylinder on the sand. For initial velocities in the range of 50− 100 cm/s, the deceleration
of the cylinders did not show a pronounced dependence on the initial velocity, as can be seen in
Figure 4(c). Trials with higher initial velocities around 175 cm/s, however, showed substantially
larger decelerations. It was difficult to produce consistent trials at these speeds, as the cylinders
would frequently bounce after leaving the ramp and veer abruptly into the side rails. We therefore
exclude these higher-velocity runs from the bulk of our analysis, but note that the discrepancies
in Figure 4(c) suggest that efforts to characterise rolling resistance only in terms of rolling speed
may well conceal the full nature of the dynamics at high speeds.

Besides the resistance encountered due to the deformation of the granular surface, air
resistance may play an important role in some trials. Taking 50 cm/s as a characteristic velocity,
6 cm as a characteristic cylinder diameter, and ν ≈ 1.5× 10−5 m2/s for the kinematic viscosity of
air, we estimate the Reynolds number of the airflow around the rolling cylinders to be of order
2000. Thus, air drag on the cylinders is expected to depend quadratically on velocity with an
order-one drag coefficient. To directly measure the effect of air drag, we performed additional
trials in which we rolled the cylinders over a glass sheet placed on the channel (see § 4).

Finally, several trials were examined to determine whether any sliding occurred as the
cylinders rolled over the granular surface. A thin black line segment was marked on the outside
of each cylinder, and the times when these lines crossed the top of the cylinders were determined
from the videos. The corresponding object positions were then used to measure the distance
travelled during one complete rotation. In the cases examined, this distance was indistinguishable
from the cylinder circumference to within the experimental precision of ∼ 1%, based on our
ability to determine the time at which each rotation was completed. Thus, we did not observe
any noticeable slip (true or effective; see §4(b,iv)) for any trials.

3. Modelling

(a) Cylinder dynamics
To model the dynamics of the system, we consider the motion of a two-dimensional rigid cylinder
rolling over a deformable granular surface. The geometry is sketched in Figure 5. We define a new
cartesian coordinate system centred under the leading contact point at the neutral surface of the
sand, with x pointing forward and z upward. The cylinder has radius R, mass per unit length
M , and moment of inertia per unit length I = αMR2. The cylinder has velocity (Ẋ(t), Ż(t)) and
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clockwise rotation rate Ω(t). The translational and rotational dynamics of the cylinder are given
by:

MẌ = Fx (3.1)

MZ̈ = Fz −Mg (3.2)

IΩ̇ =−T (3.3)

where g is gravity, and (Fx, Fz) and T are the contact force and anti-clockwise torque from the
underlying medium, again per unit length of the cylinder.

The contact forces are computed by integrating the surface stresses over the contact arc C as(
Fx
Fz

)
=

∫
C
σ · n d`, (3.4)

where σ is the granular stress tensor, and n and ` denote the cylinder normal and arc length along
C. The torque around the cylinder centre is given by

T =

∫
C
(−Rêz + r)×σ · n d`=RFx +

∫
C
r×σ · n d`, (3.5)

where r is the position vector from the bottom of the cylinder.
The horizontal and angular momentum equations can be combined to give

M(Ẍ + αRΩ̇) = Fx −
T

R
=− 1

R

∫
C
r×σ · n d`. (3.6)

If rolling occurs without significant slip we have RΩ ≈ Ẋ , as observed to within experimental
precision in our trials, and the left side of (3.6) becomes (1 + α)MẌ . Thus, the horizontal
dynamics are directly controlled by the rolling resistance,

Fr =
1

R

∫
C
r×σ · n d`. (3.7)

Below, we evaluate the integrals in (3.4) and (3.7) to leading order in the small parameter
a/R, where a is the horizontal length of the contact arc, treating the sand as a plastic material
satisfying the Mohr-Coulomb constitutive law. Before accomplishing this feat, we note that if
the surface stresses are O(ρsga), then Fx and Fz are formally O(ρsga

2) from (3.4), while Fr is
O(ρsga

3/R) from (3.7). However, if RΩ ≈ Ẋ (3.1) and (3.6) imply (1 + α)Fx =−Fr , so Fx ∼ Fr .
This can only be arranged if Fx turns out to contain a small numerical factor of order a/R, in
which case Fx ∼ (a/R)Fz . For the contact area to remain small during rolling, Ż and Z̈ must also
be O(a/R) in comparison to Ẋ and Ẍ . With these scalings and (3.1), we then have that MZ̈ ∼
MẌ(a/R)∼ Fx(a/R)∼ Fz(a/R)2. The roller is therefore in vertical equilibrium to leading order,
with Fz ≈Mg in (3.2). This allows us to estimate the magnitude of the horizontal accelerations as
Ẍ = Fx/M ∼ (Fz/M)(a/R)∼ g(a/R)� g, in line with the experimental results (see Figure 3). We
also have that Fz ≈Mg∼ ρsga2 andM ∼ ρcR2, and so the contact area scales as (a/R)∼

√
ρc/ρs,

which is 0.2− 0.6 for the experimental cylinders.

(b) Sand dynamics

(i) Slipline theory

To form a tractable model, we neglect inertial forces in the bed, which scale like ẊΩ and should
be small relative to gravity for the larger cylinders and low-velocity portions of the trials. The



10

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

quasi-static equations of force balance for the granular stresses are then

∂σxx
∂x

+
∂σxz
∂z

= 0 &
∂σxz
∂x

+
∂σzz
∂z

= ρsg, (3.8)

For the stresses, we use the Mohr-Coulomb plastic constitutive law [24], which we write in the
form,

σxx = −p+ p sinφ cos 2θ

σzz = −p− p sinφ cos 2θ
σxz = p sinφ sin 2θ, (3.9)

where φ is the internal angle of friction, p is the mean compressive stress, and θ is the anti-
clockwise angle from the horizontal to the direction of the least compressive stress. With this
rheology the stress field is conveniently represented in terms of its characteristic curves, the
sliplines. These curves are composed of two families; the α−lines are defined by

dz = tan(θ − ε) dx, dp+ 2p tanφ dθ=−ρsg(dz + tanφ dx), (3.10)

whereas the β−lines satisfy

dz = tan(θ + ε) dx, dp− 2p tanφ dθ=−ρsg(dz − tanφ dx), (3.11)

with
ε=

π

4
+
φ

2
. (3.12)

(ii) Boundary conditions

We calculate the leading-order forces in the small parameter a/R, for which it is sufficient to
linearise the surface conditions about z = 0. In the coordinate system centred at the leading edge,
the section −a< x< 0 is the contact surface C, and the section x> 0 is a free surface.

We impose a friction condition beneath the cylinder that translates to demanding that

θ= θf on z = 0, −a< x< 0. (3.13)

If the surface is perfectly smooth, θf = 0 so that σxz = 0 and σzz =−p(1 + sinφ). If it is perfectly
rough, θf =−ε and the β−lines are parallel to the surface. If δ denotes the surface friction angle,
then θf = 1

2δ +
1
2 sin−1(sin δ/ sinφ).

The free surface ahead of the contact area is in a state of compression with

p= 0, θ= 1
2π, on z = 0, x > 0 (3.14)

so that σxz = σzz = 0. This leads to a subsurface triangular region (a “Rankine zone”) where the
stress is hydrostatic (σzz = ρsgz and p=−ρsgz/(1− sinφ)), and the characteristics are straight
lines inclined at angles ±ε to the vertical.

(iii) Separable solution

The problem permits a self-similar solution corresponding to a separable form in polar
coordinates (r, ψ) [24]. We set

x= r cosψ≡Ξξ(ψ), z = r sinψ≡Ξζ(ψ), p= ρsgrΣ(ψ), θ=Θ(ψ), (3.15)

where Ξ is an undetermined lengthscale. The stress equations then reduce to

Σ′ =
Σ sin(2Θ − 2ψ)− cos(2Θ − ψ)

sinφ+ cos(2Θ − 2ψ)
(3.16)

Θ′ =
sinψ + sinφ sin(2Θ − ψ) +Σ cos2 φ

2Σ sinφ[sinφ+ cos(2Θ − 2ψ)]
. (3.17)

There are singular points in the system (3.16)-(3.17) where sinφ+ cos(2Θ − 2ψ) = 0. One such
point always occurs at the border with the triangular Rankine zone ahead of the self-similar region
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Figure 7: Self-similar slipline fields with φ= 36◦ for (a) smooth (θf = 0), (b) semi-rough (θf =

− 1
2ε), and (c) rough (θf =−ε) cylinders.

where we must impose the boundary condition

Θ(ε− 1
2π) =

1
2π, (3.18)

to match to the Rankine zone. Here, we further demand that the solution be regular, which
automatically sets the pressure to its hydrostatic value, fixing Σ(ε− 1

2π) =− sinψ/(1− sinφ)

without explicitly adding this as a second boundary condition.
For ψ→−π, we impose Θ(−π) = θf . For the perfectly rough case when θf =−ε, this second

boundary is also a singular point. Moreover, we cannot impose regularity in view of the
imposition of all the boundary conditions already. Instead, the derivative of the solution diverges
and we exploit the local solution,

Θ + ε∼

√
|ψ + π| [1 +Σ(−π) cotφ]

2Σ(−π) , (3.19)

to impose the boundary condition at an angle slightly below −π. Numerical solutions for rough,
semi-rough and smooth cylinders are shown in Figure 6.

Given ξ(ψ) = ζ(ψ) cotψ along each characteristic, we have

ζ′ =
ζ sec2 ψ cotψ

1− tanψ cot(Θ ∓ ε) . (3.20)

We may solve this ODE subject to ζ→ 0 for ψ→−π, implying ξ→−1. The resulting curves
(x, z) =Ξ(ξα,β(ψ), ζα,β(ψ)), corresponding to the two choices of sign in (3.20), generate the
slipline field through the scaling Ξ . Examples are shown in Figure 7.
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Figure 8: Sketch of the geometry for the Collins slipline solution in the limit of small deformation.
The contact area occupies −1<x/a< 0, and the bow wave extends in front of the cylinder over
x/a> 0. The angle subtended by the rotating plug is χp ≡ ε−Θ(ψp)− φ. The slipline field is
plotted for φ= 36◦, θf =− 1

2ε, and ψp =−4π/5.

(iv) Collins construct

As seen below, the surface forces acting on the cylinder that are predicted by the separable
solution cannot be adjusted to ensure that Fx =O(ρsga

3/R) in accordance with the cylinder
dynamics discussed in § 3(a). This motivates a modification of the separable solution that follows
Collins’ solution for a cohesive ideal plastic deforming underneath a roller [26]. We attach a plug
of grains to the surface of the cylinder, such that the roller and plug rigidly rotate about a point
(xo, zo) beneath the granular surface. For the back surface to depart tangentially from the cylinder,
the rotation centre must lie along the line connecting the back contact point with the centre of the
cylinder. If we define Υ to be the angle this line makes with the vertical, and a` to be the distance
from (xo, zo) to the back contact point, then we have

(Ẋ, Ż) = (R+ a`)Ω(cosΥ,− sinΥ ). (3.21)

With a�R and Ż =O(aẊ/R), we must have that Υ =O(a/R), (xo, zo)∼−a(1, `), and

Ẋ =RΩ + a`Ω +O(a2Ω/R), (3.22)

as illustrated in Figure 8. Thus, there is an effective slip with speed Ẋ −RΩ ≈ a`Ω, even though
there is no true slip between the surfaces.

Ahead of the plug, the material deforms plastically and the separable solution applies. Because
the border between the rotating plug and this plastic region is a yield surface, it must also follow
a slip-line; we choose this to be a specific one of the self-similar β-lines intersecting the contact
surface at (−xβ , 0) (see Figure 8). This β−line continues down to the point P where it intersects
the lowest α−line, which bounds the entire yielded region. The left-hand border of the rotating
plug divides that region from the immobile grains below, and for a Mohr-Coulomb material
following an associated flow rule, must form a logarithmic spiral maintaining a pitch angle φ
with the circular velocity of the plug material [30]. The shape of the log-spiral is given by

xs(χ) =−a+ a`e−χ tanφ sinχ & zs(χ) =−a`+ a`e−χ tanφ cosχ, (3.23)

where χ is the angular position relative to (xo, zo), measured clockwise from the vertical. This
log-spiral continues the lowest α−line to the origin, and meets that characteristic tangentially at
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the point P . This geometry demands that

`=
− sinψp

e−χp tanφ cos[ψp + χp]− cosψp
, (3.24)

where ψp is the polar angle of the intersection point and χp = ε−Θ(ψp)− φ. The lowest α−line
is given by (x, z) = xα(ξα, ζα), and the β−line bordering the rotating plug is (x, z) = xβ(ξβ , ζβ),
where

xα,β =
zs(χp)

ζα,β(ψp)
. (3.25)

The stress along the failure surface underlying the rotating plug is not given by the separable
solution. Instead, the requirement that the log-spiral continues the lowest α−line, in conjunction
with the yield criterion, implies that

dp

dχ
= 2p tanφ+ ρsga` sec

2 φ e−χ tanφ sinχ. (3.26)

and θ= ε− χ− φ. Equation (3.26) can be integrated from χ= χp up to χ= 0, assuming that
the pressure is continuous and matches with that of the separable solution at P (no boundary
condition is therefore applied at the back contact point, in line with previous constructions
[21,22]).

(v) Forces and torques

We let L denote the contour combining the log-spiral and β−line that border the plug with the
section of the contact surface from (−xβ , 0) to the origin. The forces acting on this contour are the
same as the forces acting on the cylinder modulo the contributions from the weight of the rotating
plug. We therefore write the forces in (3.4) and (3.7) as

Fx = F̂x, Fz = F̂z −
∫ ∫

A
ρsg dA, Fr = F̂r −

∫ ∫
A
(a+ x)ρsg dA, (3.27)

where the integrals are taken over the area A of the plug, and where F̂x, F̂z and F̂r are the forces
acting on L. These are given by(

F̂x
F̂z

)
=

∫
L
p

(
1− sinφ cos 2θ − sinφ sin 2θ

− sinφ sin 2θ 1 + sinφ cos 2θ

)
·n ds, (3.28)

and

F̂r =
1

R

∫
L
r×p

(
1− sinφ cos 2θ − sinφ sin 2θ

− sinφ sin 2θ 1 + sinφ cos 2θ

)
·n ds (3.29)

where n denotes the outward normal to L. These integrals can be calculated using the separable
solution and (3.26) for p and θ. Since the pressure scales with the weight of the material, ρsga,
the contact length a can be scaled out and the resulting forces written in terms of dimensionless
functions as

Fx = ρsga
2Fx(`;φ, θf ) Fz = ρsga

2Fz(`;φ, θf ) Fr =
a

R
ρsga

2Fr(`;φ, θf ). (3.30)

Sample solutions for the force functions Fx(`;φ, θf ), Fz(`;φ, θf ) and Fr(`;φ, θf ) are shown in
Figure 9(a) for a perfectly rough cylinder with φ= 36◦. The horizontal and vertical stresses along
L for a specific choice of ` (corresponding to the solution in Figure 8) are shown in Figure 10.
The stresses for the separable solution grow linearly with position along the line of contact as
indicated by the plots for x>−xβ in (b); the redistribution of stress along the contour L due to
the presence of the rotating plug modifies the total bed reaction, reducing Fx(`) and generating
stress jumps at the switches between the different pieces of L.

As argued earlier, the angular and horizontal accelerations can only be consistent with one
another provided that Fx is small. In particular, we must have Fx =O(a/R), which demands
that ` must be close to the value `= `∗ that gives Fx(`∗;φ, θf ) = 0. Note that the result for the
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Figure 9: (a) Dimensionless force functions for the Collins solution, for φ= 36◦ and a perfectly
rough cylinder. The vertical dashed line indicates the location `= `∗ at whichFx = 0. (b) Lift force
F∗z =Fz(`∗;φ, θf ) and rolling resistance F∗r =Fr(`∗;φ, θf ) as a function of internal frictional
angle. Solid lines show the perfectly rough case; dashed lines show the result for θf =−ε/10.
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Figure 10: Dimensionless horizontal and vertical stresses on the contour L for the solution shown
in Figure 8; (a) shows stress vectors (force per unit length), whereas (b) plots the horizontal (solid)
and vertical (dashed) stress components.

separable solution (with no attached plug) is recovered by taking `= 0, which indicates that this
case cannot furnish consistent horizontal and angular accelerations on the cylinder.

To leading order we therefore find

Fz ∼ ρsga2F∗z and Fr ∼
a

R
ρsga

2F∗r , (3.31)

where [F∗z ,F∗r ]≡ [Fz(`∗;φ, θf ),Fr(`∗;φ, θf )]. The two special values F∗z and F∗r are plotted as
functions of φ in Figure 9(b) for a perfectly rough and a semi-rough cylinder. Even though the
semi-rough case is almost smooth (θf =−ε/10), the change in the dimensionless force function
is very slight. Thus, the rolling resistance is expected to be insensitive to the roughness of the
surface of the cylinder. One could also envision a situation in which the cylinder slides over the
granular bed (and the rotating plug) in the manner of true slip when the net normal force over
the contact line is small in comparison to the total tangential force. This situation is ruled out for
surface friction coefficients of order unity when `∼ `∗, as this guarantees that the tangential force
on the surface is O(a/R) relative to the normal force.
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In Appendix A, we proceed further with the model and also compute the velocity field of the
deforming granular bed, which allows one to determine the shape of the free surface in the bow
wave ahead of the roller. Two significant problems emerge with this construction when using the
traditional Mohr-Coulomb model: the leading-order velocity field diverges at the front contact
point and the free surface descends unphysically below the bottom of the rolling cylinder. Both
problems are absent for a cohesive material (Appendix B), and arise here because the standard
Mohr-Coulomb model predicts an excessive degree of dilation during flow, which is a known
deficiency of the theory [31,32] and can be cured by introducing a relatively small angle of dilation
(see Appendix A).

4. Analysis
To compare with the predictions of the plasticity theory, we fit the experimental data to model
trajectories given by a force law with constant and quadratic velocity terms:

Ẍ =C0 + C2Ẋ
2. (4.1)

Before performing the fits, we truncated the trajectories once their velocities dropped below
5 cm/s to prevent stopping effects such as the rollback in Figure 4(b) from affecting the parameters
of the fit. We then performed a nonlinear least-squares fit to the solutions of (4.1) on all trials for
each cylinder and granular material combination, using the initial position and velocity for each
trial and the force-law coefficientsC0 andC2 as parameters. Uncertainties in the fitted parameters
were determined using the covariances from the nonlinear fit, scaled by the square-root of the
95th percentile of the corresponding χ2 distribution, with the uncertainties in the position data
all taken to be 3mm.

The fitting results for trials on the glass sheet, sand, and ballotini are shown in Figure 11.
The fits for the glass sheet show a small constant resistance and a more substantial quadratic
component, suggesting that air drag provides the dominant resistance in these trials. In this case,
C2 is related to the cylinder’s drag coefficient Cd by

C2 =−
1

2π

ρa
ρc

Cd
R(1 + α)

. (4.2)

The average of the fitted C2 values suggests that Cd = 2.7± 0.3 for cylinders rolling on a flat
surface.

For most cylinders on both the ballotini and sand, the fitted values of C0 and C2 indicate that
the velocity-dependent component of the acceleration is less significant than the constant drag at
the typical velocities of our trials. The ballotini shows a substantially larger constant resistance
than the sand, but the two typically show comparable quadratic components. In both cases, the
fitted C2 values are roughly an order of magnitude larger than those expected from air resistance,
indicating that there is some velocity-dependent rolling resistance for these materials.

If the cylinder is in vertical equilibrium (Fz =Mg) and is fully rough, the leading-order vertical
force predicted by the model can be used to solve for the contact length a as( a

R

)2
=
ρc
ρs

π

F∗z
, (4.3)

with the internal friction angle of each bed material determined from its dynamic angle of
repose via sin(φ) = tan(φc) [18]. This estimate improves the prediction from dimensional analysis
given earlier and suggests that a/R≈ 0.1 and 0.4 for our experiments with sand and ballotini,
respectively. The leading-order prediction for the rolling resistance can now be written as the
constant acceleration,

C0,theory =− g

1 + α

( a
R

) F∗r
F∗z

=− g

1 + α

(
ρc
ρs

)1/2

Γ (φ, θf ), Γ (φ, θf ) =

√
πF∗2r
F∗3z

. (4.4)
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Figure 11: Best fitting force-law coefficients for cylinders rolling on the glass sheet, sand, and
ballotini, showing (a) C0 and (b) C2 in (4.1). In (b), the points labelled “air drag” refer to the
estimate (4.2) with Cd = 2.7.
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Figure 12: (a) The factor Γ in (4.4) as a function of internal friction angle, with the values for
ballotini and sand indicated by dots. (b) Comparison between fitted and model rolling resistance.
Both are plotted for a fully rough cylinder surface (θf =−ε).

The dimensionless factor Γ in (4.4) is plotted as a function of internal friction angle in Figure 12(a).
Somewhat counterintuitively, this factor decreases with the internal friction, because although the
drag force Fr increases with φ, the contact area needed to support the weight of the cylinder
decreases more strongly with friction. In other words, the roller digs into the medium more
for lower φ, increasing the rolling resistance, as seen in the experiments where the cylinders
encounter greater resistance when rolling over the ballotini in comparison to sand. A more
detailed comparison of theory and experiment is shown in Figure 12(b), which shows the ratio
between the fittedC0 values for sand and ballotini and the model prediction in (4.4), including the
uncertainty in the friction angle for each material. The theory under-predicts the fitted resistances
by roughly 50% for both the sand and the ballotini, but correctly captures the overall magnitude
of the rolling resistance and its scaling with the cylinder’s mean density.

Unfortunately, the trajectory fits typically show strong covariances between C2 and the
initial velocities of the faster trials, which limits our confidence in the inferred values of these
parameters. Moreover, different forms for the velocity dependence of the force law (such as a



17

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

linear form) lead to trajectories that do not fit the data any more or less conclusively. We cannot
therefore characterise the velocity dependence of the resistance in any further detail.

5. Conclusion
We have experimentally investigated the resistance experienced by cylinders rolling on two
dry granular media, a relatively coarse sand and ballotini (glass spheres). The cylinders were
relatively long and light, with low mean densities compared to the granular materials, which
distinguishes our study from some earlier experiments with spheres [17] and the bulk of the
literature on wheels. Thus, surface deformations are expected to be localised and superficial. This
allows us to model the bed as two-dimensional and in the asymptotic limit that the deforming
contact region is much smaller than the cylinder radius, and the deflection of the free surface is
slight [19–21]. We further adopted the cohesionless Mohr-Coulomb law to describe the granular
rheology. The resulting model predicts that the rolling resistance is independent of cylinder
velocity, scaling with the square-root of the ratio of mean densities.

The trajectories of cylinders in the experiment were fitted using a simple drag law in which
rolling resistance consisted of an overall constant plus a rate-dependent part that was quadratic
in cylinder speed, similar to that expected for air drag. The measured drag was dominated by
the constant term at the velocities typical of our experiments. However, the quadratic component
was larger than that expected for air drag, which was estimated by rolling the cylinders down
a flat glass surface. Thus, the rolling resistance appears to contain an effect stemming from
rate-dependent granular rheology. We did not, however, attempt to include such effects into
the rheology of our theoretical model, as might be feasible by exploiting recently proposed
semi-empirical friction laws [18].

Nevertheless, the basic drag constant measured in the experiments is, to within a factor of two,
consistent with that predicted by the Mohr-Coulomb plasticity model, and matches the predicted
dependence on the ratio of mean densities. One important feature of the model is the characteristic
flow pattern underneath the rolling cylinder. Following Collins [26], we have represented this
pattern in terms of a region of plastic deformation below the front contact point which extends
up to the free surface ahead of the cylinder, and back to a plug that is rigidly attached to the
roller. The plug rigidly rotates with the cylinder and slides along a log-spiral failure surface over
the static grains underneath. The rotating plug incorporates a finite, but small, effective slip of
the cylinder as it rolls due to granular deformation, as in Reynolds’ [5] original image of the
mechanism underlying rolling friction. Crucially, the plug also reorients the forces that are exerted
by the bed such that the net horizontal force on the cylinder can be made small in accordance with
its equations of motion. Without this reorientation, there is a physical inconsistency between the
angular and horizontal momentum equations that precludes a rolling state.

Several extensions to the experiments may allow a better determination of rolling resistance
of light cylinders on granular media: a longer bed would permit one to record trajectories with
a larger range of velocities, and further improvement to the scene calibration would allow better
inference of the cylinder trajectories in physical space, both of which would help to constrain
the velocity dependence of the drag. An experimental setup with a more precise launching
mechanism and a faster way to resurface the bed would help eliminate unsuccessful trials and
reduce their lateral motion and history dependence. However, such effects are interesting in their
own right, and may be important to any practical applications of rolling over granular media.
In particular, the sideways veering of the cylinders as they leave the centreline of the channel is
suggestive of an instability that deserves further exploration.
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A. Velocity field and free surface shape
In a generalisation of Mohr-Coulomb theory, the characteristic curves of the velocity field (u,w)

are given by
dz = tan(θ − 1

4π −
1
2ν)dx, du+ tan(θ − 1

4π −
1
2ν) dw= 0, (A 1)

and
dz = tan(θ + 1

4π + 1
2ν)dx, du+ tan(θ + 1

4π + 1
2ν) dw= 0, (A 2)

where ν is the angle of dilation such that

ux + wz = sin ν
√

(ux − wz)2 + (uz + wx)2. (A 3)

(e.g. [31,32]). Only when ν = φ, as in the traditional Mohr-Coulomb model, do the characteristics
of the stress and velocity fields coincide.

To construct the velocity fields associated with our leading-order stress field solutions,
we integrate (A 1) and (A 2) numerically using centred differences on a grid defined by the
characteristics of the velocity field, exploiting the self-similar solution for θ. We begin the
integration along the lowest α−line within the yielded region and the β−line forming the yielded
edge of the rotating plug. If these stress characteristics are not also velocity characteristics (ν 6= φ),
the velocity must be prescribed on both of these borders to match with the stationary unyielded
material below and the rigidly rotating plug to the back. If ν = φ, the borders are velocity
characteristics and slip is allowed along them, provided it occurs at angle φ to the characteristics.
The numerical integration then progresses upward and rightward to furnish the velocity field
over the characteristic web underneath the last velocity characteristic leaving the top right corner
of the rotating plug. Above this curve, the characteristics no longer begin from the plug, but
from the yielded section of the x−axis. There, the z = 0 intercepts of the upcoming characteristics
must be found, and new downward characteristics launched to complete the web throughout the
yielded region, taking the prescribed normal velocity w=−Ω(a+ x) as the boundary condition.

The velocity field computed for the parameter values of Figure 8 is shown in Figure 13 for
ν = φ and ν = 0. In the first case, the velocity becomes arbitrarily large at the right-hand edge of
the contact region, as for the problem of a critically loaded foundation [25], which reflects the
well-known deficiency of the traditional Mohr-Coulomb model in predicting excessive dilation
during flow. Neglecting inertial terms in the bed dynamics requires that the sand velocities are
. aΩ (given that ẊΩ . g for the experiments), which is not satisfied by this model. By contrast,
a dilation angle of ν = 0 furnishes an incompressible flow with velocities . aΩ that is free of
this singularity, but has velocity characteristics that no longer coincide with those of the stress,
and which exposes a stationary, yielded zone underneath the flow region. Note that, to remain
consistent with incompressibility, the rigidly rotating plug is now bordered from below by a
circular arc which joins smoothly onto a velocity characteristic in the yielded region, and along
which the stress is not prescribed by (3.26). Thus, the predictions for the rolling resistance no
longer apply when ν 6= φ.

Let z = h=O(a2/R) denote the position of the granular surface. For nearly steady rolling
(Ż ≈ 0), the back contact point lies at the bottom of the roller and the kinematic condition for
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Figure 13: Speed contours for φ= 36◦, ψp =−4π/5, θf =− 1
2ε. Top: log10(

√
u2 + w2/aΩ) for ν =

φ. Bottom:
√
u2 + w2/aΩ) for ν = 0. For each, the predicted free surface shape is shown above.

the free surface becomes −Ẋhx =w +O(a2Ẋ/R2). Hence,

h=

∫xf

x

w

Ẋ
dx= hb +

a2

2R
−

∫x
0

w

Ẋ
dx for 0<x<xf , (A 4)

where hb = h(−a), xf denotes the front of the bow wave (where h= 0), and we have matched to
the contact arc below the roller, where h= hb + (x+ a)2/(2R) for −a< x< 0. Note that∫ ∫

A
(ux + wz) dxdz =

∫xf

0
w(x, 0) dx− 1

2a
2Ω = Ẋhb, (A 5)

where A denotes the area over which deformation takes place. Thus, without dilation, mass
conservation demands that the free surface descends exactly to the bottom of the roller (hb = 0).
Conversely, any dilation implies that the incoming granular surface lies below the roller (hb > 0),
for which there was no experimental evidence (if anything, the medium is compacted and the
cylinders roll at a position below the incoming surface). The predicted free surfaces for the two
values of dilation angle are also presented in Figure 13. The excessive dilation of the Mohr-
Coulomb model with ν = φ leads to an unphysical descent of the free surface, which is avoided
by taking ν = 0.

B. The cohesive Collins solution for a�R
For cohesive material without gravity, the p sinφ factors in (3.9) are replaced by the cohesion
c, and the slipline solution consists of a Rankine wedge leading a centred fan with circular
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Figure 14: (a) Slipline field and (b) speed contours of the cohesive solution for ψp =−17π/20. The
scaled free-surface shape Rh(x)/a2 is also plotted in (b).

α−lines and straight radial β−lines. The fan geometry demands that the β−lines be straight
everywhere, and so the rigidly rotating plug attached to the roller spans the entire contact area
and `= tanψp; see Figure 14. Within the Rankine wedge the sliplines are inclined at ± 1

4π to the
horizontal, with θ= 1

2π and p= c (ε≡ 1
4π). The fan extends back to the angle ψp from ψ=− 1

4π,
and within it, θ= 3

4π + ψ and p+ 2cθ= c(1 + π), or p= c(1− 1
2π − 2ψ). Along the circular failure

arc that continues the lowest α−line, θ= 1
4π − χ and p+ 2cθ= c(1 + π), or p= c(1 + 1

2π + 2χ),
for 0≤ χ≤−ψp − 1

2π. The force exerted on the roller can then be determined by integrating over
the contour L as in § 3. Again, there is a special value, `= `∗ ≈ 0.43, for which the horizontal force
vanishes, leading to the lift force, Fz ∼ 4.90ac, and rolling resistance, Fr ∼ 3.25a2c/R.

Within the yielded region, the velocity field is directed along the α−lines with speed
uα =−Ω(r + a secψp) (the velocity equations are duα =−uβdθ and duβ = uαdθ along the two
characteristics, and uβ = 0 along the lowest α−line, implying uβ = 0 everywhere); cf. Figure 14(b).
The velocity at the free surface is therefore 1

2

√
2uα(1, 1) =− 1

2Ω(x+ a
√
2 secψp)(1, 1), which

implies the free surface profile from (A 4),

h(x) =
a2

2R
+

x

4R
(x+ 2a

√
2 secψp). (A 1)

At the front of the bow wave, x= xf ≡−a(secψp + tanψp)
√
2, we find h= 0, confirming that the

bottom of the roller lies at the level of the undeformed surface; see Figure 14.
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